References
- Torres-León C., Chávez-González M. L., Hernández-Almanza A., Martínez-Medina G. A., Ramírez-Guzmán N., Londoño-Hernández L., Aguilar C. N. Recent advances on the microbiological and enzymatic processing forconversion of food wastes to valuable bioproducts. Curr Opin Food Sci 2020:38:40–45. https://doi.org/10.1016/j.cofs.2020.11.002
- Chavan S., Yadav B., Atmakuri A., Tyagi R. D., Wong J. W. C., Drogui P. Bioconversion of organic wastes into value-added products: A review. Bioresource Technology 2022:344(PartB):126398. https://doi.org/10.1016/j.biortech.2021.126398
- Narisetty V., Adlakha N., Singh N. K., Dalei S., Prabhu A. A., Nagarajan S., Kumar A. N., Kumar G., Singh V., Kumar V. Integrated Biorefineries for Repurposing of Food Wastes into Value-added Products. Bioresource Technology 2022:363:127856. https://doi.org/10.1016/j.biortech.2022.127856
- Pan F-D., Liu S., Xu Q. M., Chen X. Y., Cheng J. S. Bioconversion of kitchen waste to surfactin via simultaneous enzymolysis and fermentation using mixed-culture of enzyme-producing fungi and Bacillus amyloliquefaciens HM618. Biochem Eng J 2021:172:108036. https://doi.org/10.1016/j.bej.2021.108036
- Merrylin J., Preethi G. D. Saratale, Banu J. R. Production of biopolymers and feed protein from food wastes. Food Waste to Valuable Resources: Applications and Management 2020:143–162. https://doi.org/10.1016/B978-0-12-818353-3.00007-9
- Kwan T. H., Hu Y., Lin S. Z. K. Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota. Bioresour Technol 2016:217:129–136. https://doi.org/10.1016/j.biortech.2016.01.134
- Muniz C. E. S., Santiago Â. M., Gusmão T. A. S., Oliveira H. M. L., Conrado L. de S., de Gusmão R. P. Solid-state fermentation for single-cell protein enrichment of guava and cashew by-products and inclusion on cereal bars. Biocatal Agric Biotechnol 2020:25:101576. https://doi.org/10.1016/j.bcab.2020.101576
- Vidal-Antich C., Peces M., Perez-Esteban N., Mata-Alvarez J., Dosta J., Astals S. Impact of food waste composition on acidogenic co-fermentation with waste activated sludge. Science of the Total Environment 2022:849:157920. https://doi.org/10.1016/j.scitotenv.2022.157920
- European Commission, Directorate-General for Research and Innovation, A sustainable bioeconomy for Europe – Strengthening the connection between economy, society and the environment – Updated bioeconomy strategy, Publications Office, 2018. https://data.europa.eu/doi/10.2777/792130
- Areniello M., Matassa S., Esposito G., Lens P. N. L. Biowaste upcycling into second-generation microbial protein through mixed-culture fermentation. Trends Biotechnol 2022:41(2):197–213. https://doi.org/10.1016/j.tibtech.2022.07.008
- Heureux A.M.C., Matsumoto T.K. Toward a zero-waste model: Potential for microorganism growth on agricultural waste products in Hawaii. Algal Research 2022:62:102640. https://doi.org/10.1016/j.algal.2022.102640
- Fernandes De Brito L., Qin W., Sanitá M., Ca L. M., Coutinho De Lucas R., Lima M. S. Co-cultivation, Co-culture, Mixed Culture, and Microbial Consortium of Fungi: An Understudied Strategy for Biomass Conversion. Frontiers in Microbiology 2022:12:837685. https://doi.org/10.3389/fmicb.2021.837685
- Fang W., Zhang X., Zhang P., Wan J., Guo H., Ghasimi Dara S.M., Morera X. C. Overview of key operation factors and strategies for improving fermentative volatile fatty acid production and product regulation from sewage sludge. Journal of Environmental Sciences 2020:87:93–111. https://doi.org/10.1016/j.jes.2019.05.027
- Peces M., Pozo G., Koch K., Dosta J., Astals S. Exploring the potential of co-fermenting sewage sludge and lipids in a resource recovery scenario. Bioresour Technol 2019:300:122561. https://doi.org/10.1016/j.biortech.2019.122561
- Perez-Esteban N., et al. Potential of anaerobic co-fermentation in wastewater treatments plants: A review. Science of the Total Environment 2022:813:152498. https://doi.org/10.1016/j.scitotenv.2021.152498
- Tu W. C., Hallett J. P. Recent advances in the pretreatment of lignocellulosic biomass. Curr Opin Green Sustain Chem 2019:20:11–17. https://doi.org/10.1016/j.cogsc.2019.07.004
- Madhavan A., et al. Design of novel enzyme biocatalysts for industrial bioprocess: Harnessing the power of protein engineering, high throughput screening and synthetic biology. Bioresource Technology 2021:325:124617. https://doi.org/10.1016/j.biortech.2020.124617
- Ma Y., Cai W., Liu Y. An integrated engineering system for maximizing bioenergy production from food waste. Applied Energy 2017:206:83–89. https://doi.org/10.1016/j.apenergy.2017.08.190
- Katsimpouras C., Stephanopoulos G. Enzymes in biotechnology: Critical platform technologies for bioprocess development. Curr Opin Biotechnol 2021:69:91–102. https://doi.org/10.1016/j.copbio.2020.12.003
- Saha B. C., Qureshi N., Kennedy G. J., Cotta M. A. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. Int Biodeterior Biodegradation 2016:109:29–35. https://doi.org/10.1016/j.ibiod.2015.12.020
- Chen H., Fu X. Industrial technologies for bioethanol production from lignocellulosic biomass. Renewable and Sustainable Energy Reviews 2016:57:468–478. https://doi.org/10.1016/j.rser.2015.12.069
- Edmunds C. W., et al. Fungal Pretreatment and Enzymatic Hydrolysis of Genetically-modified Populus trichocarpa. 2020:15(3):6488-6505. https://doi.org/10.15376/biores.15.3.6488-6505
- Tian fei X., Fang Z., Guo F. Impact and prospective of fungal pre-treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels, Bioproducts and Biorefining 2012:6(3):335–350. https://doi.org/10.1002/bbb.346
- Pleissner D., Kwan T. H., Lin C. S. K. Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresource Technology 2014:158:48–54. https://doi.org/10.1016/j.biortech.2014.01.139
- Leung C. C. J., Cheung A. S. Y., Zhang A. Y. Z., Lam K. F., Lin C. S. K. Utilisation of waste bread for fermentative succinic acid production. Biochem Eng J 2012:65:10–15. https://doi.org/10.1016/j.bej.2012.03.010
- Yang R., Chen Z., Hu P., Zhang S., Luo G. Two-stage fermentation enhanced single-cell protein production by Yarrowia lipolytica from food waste. Bioresour Technol 2022:361:127677. https://doi.org/10.1016/j.biortech.2022.127677
- de O. Finco A. M., Mamani L. D. G., de Carvalho J. C., de Melo Pereira G. V., Thomaz-Soccol V., Soccol C. R. Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology 2017:37(5):656–671. https://doi.org/10.1080/07388551.2016.1213221
- Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environmental and Climate Technologies 2018:22(1):149–164. https://doi.org/10.2478/rtuect-2018-0010
- Enrique Blas T. G. Digestion of starch and sugars. CABI Publishing, Wallingford, UK, 1998.
- Carrasco M., Villarreal P., Barahona S., Alcaíno J., Cifuentes V., Baeza M. Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiol 2016:16:21. https://doi.org/10.1186/s12866-016-0640-8
- Arman Z., et al. Screening of amylolytic and cellulolytic yeast from Dendrobium spathilingue in Bali Botanical Garden, Indonesia. AIP Conf. Proc. 2020:2242:050013. https://doi.org/10.1063/5.0007802
- Touijer H., Benchemsi N., Ettayebi M., Janati Idrissi A., Chaouni B., Bekkari H. Thermostable Cellulases from the Yeast Trichosporon sp. Enzyme Res 2019: Article 2790414. https://doi.org/10.1155/2019/2790414
- Bullerman L. B. Spoilage. Fungi in Food – An Overview. Encyclopedia of Food Sciences and Nutrition. pp. 2003:5511–5522. https://doi.org/10.1016/B0-12-227055-X/01129-9
- What Are the Factors That Affect Fungal Alpha Amylase Activity? – Jiangsu Yiming Biological Technology Co., Ltd. [Online]. [Accessed 29.12.2022]. Available: https://www.yimingbiotechnology.com/what-are-the-factors-that-affect-fungal-alpha-amylase-activity.html
- Pardo A. G., Forchiassin F. Influence of temperature and pH on cellulase activity and stability in Nectria catalinensis. PubMed 1999:31(1):31–35.
- Doriya K., Jose N., Gowda M., Kumar D. S. Solid-State Fermentation vs Submerged Fermentation for the Production of L-Asparaginase. Advances in Food and Nutrition Research 2016:78:115–135. https://doi.org/10.1016/bs.afnr.2016.05.003
- O-Thong S., Mamimin C., Kongjan P., Reungsang A. Two-stage fermentation process for bioenergy and biochemicals production from industrial and agricultural wastewater. Advances in Bioenergy 2020:5:249–308. https://doi.org/10.1016/bs.aibe.2020.04.007
- Martín-Sampedro R., et al. Endophytic Fungi as Pretreatment to Enhance Enzymatic Hydrolysis of Olive Tree Pruning. BioMed Research International 2017: Article 9727581. https://doi.org/10.1155/2017/9727581
- El Gnaoui Y., Frimane A., Lahboubi N., Herrmann C., Barz M., El Bari H. Biological pre-hydrolysis and thermal pretreatment applied for anaerobic digestion improvement: Kinetic study and statistical variable selection. Cleaner Waste Systems 2022:2:100005. https://doi.org/10.1016/j.clwas.2022.100005
- Pleissner D., Lam W. C., Sun Z., Lin C. S. K. Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresource Technology 2013:137:139–146. https://doi.org/10.1016/j.biortech.2013.03.088
- Su W., et al. Dynamics of defatted rice bran in physicochemical characteristics, microbiota and metabolic functions during two-stage co-fermentation. Int J Food Microbiol 2021:362:109489. https://doi.org/10.1016/j.ijfoodmicro.2021.109489
- Yin Y., Liu Y. J., Meng S. J., Kiran E. U., Liu Y. Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion. Appl Energy 2016:179:1131–1137. https://doi.org/10.1016/j.apenergy.2016.07.083
- Souza Filho P. F., Zamani A., Taherzadeh M. J. Edible Protein Production by Filamentous Fungi using Starch Plant Wastewater. Waste Biomass Valorization 2019:10:2487–2496. https://doi.org/10.1007/s12649-018-0265-2
- Dorado M. P., Lin S. K. C., Koutinas A., Du C., Wang R., Webb C. Cereal-based biorefinery development: Utilisation of wheat milling by-products for the production of succinic acid. J Biotechnol 2009:143(1):51–59. https://doi.org/10.1016/j.jbiotec.2009.06.009
- Godoy M. G., Amorim G. M., Barreto M. S., Freire D. M. G. Agricultural Residues as Animal Feed. Current Developments in Biotechnology and Bioengineering 2018:235–256. https://doi.org/10.1016/B978-0-444-63990-5.00012-8
- Dai X., Sharma M., Chen J. Fungi in sustainable food production. Fungal Bio. Scotland, United Kingdom, 2021. https://doi.org/10.1007/978-3-030-64406-2
- Ong A., Lee C. L. K. Cooperative metabolism in mixed culture solid-state fermentation. LWT 2021:152:112300. https://doi.org/10.1016/j.lwt.2021.112300
- Zhao G., Ding L. L., Pan Z. H., Kong D. H., Hadiatullah H., Fan Z. C. Proteinase and glycoside hydrolase production is enhanced in solid-state fermentation by manipulating the carbon and nitrogen fluxes in Aspergillus oryzae. Food Chem 2019:271:606–613. https://doi.org/10.1016/j.foodchem.2018.07.199
- Peciulyte A., Pisano M., de Vries R. P., Olsson. Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail. Biotechnol Lett 2017:39:1403–1411. https://doi.org/10.1007/s10529-017-2371-9
- Sakarika M., et al. Production of microbial protein from fermented grass. Chemical Engineering Journal 2022:433(2):133631. https://doi.org/10.1016/j.cej.2021.133631
- Kavitha S., Jayashree C., Adish Kumar S., Yeom I. T., Rajesh Banu J. The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment. Bioresour Technol 2014:168:159–166. https://doi.org/10.1016/j.biortech.2014.01.118
- Nataraja S., Chetan D. M., Krishnappa M. Effect of temperature on cellulose enzyme activity in crude extracts isolated from solid wastes microbes. Int J Microbiol Res 2010:2(2):44–47. https://doi.org/10.9735/0975-5276.2.2.44-47
- Lam W. C., Pleissner D., Sze C., Lin K. Production of Fungal Glucoamylase for Glucose Production from Food Waste. Biomolecules 2013:3:651–661. https://doi.org/10.3390/biom3030651
- Ding H. H., Chang S., Liu Y. Biological hydrolysis pretreatment on secondary sludge: Enhancement of anaerobic digestion and mechanism study. Bioresour Technol 2017:244(P1):989–995. https://doi.org/10.1016/j.biortech.2017.08.064
- Barapatre S., Rastogi M., Savita, Nandal M. Isolation of fungi and optimization of ph and temperature for cellulase production. Nature Environment and Pollution Technology 2020:19(4):1729–1735. https://doi.org/10.46488/NEPT.2020.v19i04.044
- Lin H., Chen W., Ding H. AcalPred: A Sequence-Based Tool for Discriminating between Acidic and Alkaline Enzymes. PLoS One 2013:8(10). https://doi.org/10.1371/journal.pone.0075726
- Daniela Q., Federica B., Lofaro F. D. The biology of vascular calcification. International Review of Cell and Molecular Biology 2020:354:261–353. https://doi.org/10.1016/bs.ircmb.2020.02.007
- Wang R., et al. Analyzing pepsin degradation assay conditions used for allergenicity assessments to ensure that pepsin susceptible and pepsin resistant dietary proteins are distinguishable. PLoS One 2017:12(2). https://doi.org/10.1371/journal.pone.0171926
- Pleissner D., Kwan T. H., Lin C. S. K. Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresour Technol 2014:158:48–54. https://doi.org/10.1016/j.biortech.2014.01.139
- Li X., Mettub S., Martin G. J. O., Ashokkumarb M. Ultrasonic pretreatment of food waste to accelerate enzymatic hydrolysis for glucose production. Ultrasonics Sonochemistry 2019:53:77–82. https://doi.org/10.1016/j.ultsonch.2018.12.035
- Rahaman A., Kumari A., Zeng X.-A., Farooq M. A., Siddique R., Khalifa I., Siddeeg A., Ali M., Manzoor M. F. Ultrasound based modification and structural-functional analysis of corn and cassava starch. Ultrasonics Sonochemistry 2021:80:105795. https://doi.org/10.1016/j.ultsonch.2021.105795
- Hu A., et al. Ultrasonically aided enzymatical effects on the properties and structure of mung bean starch. Innovative Food Science and Emerging Technologies 2013:20:146–151. https://doi.org/10.1016/j.ifset.2013.08.005
- Zhu F. Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends Food Sci Technol 2015:43(1):1–17. https://doi.org/10.1016/j.tifs.2014.12.008