Torres-León C., Chávez-González M. L., Hernández-Almanza A., Martínez-Medina G. A., Ramírez-Guzmán N., Londoño-Hernández L., Aguilar C. N. Recent advances on the microbiological and enzymatic processing forconversion of food wastes to valuable bioproducts. Curr Opin Food Sci 2020:38:40–45. https://doi.org/10.1016/j.cofs.2020.11.002
Chavan S., Yadav B., Atmakuri A., Tyagi R. D., Wong J. W. C., Drogui P. Bioconversion of organic wastes into value-added products: A review. Bioresource Technology 2022:344(PartB):126398. https://doi.org/10.1016/j.biortech.2021.126398
Narisetty V., Adlakha N., Singh N. K., Dalei S., Prabhu A. A., Nagarajan S., Kumar A. N., Kumar G., Singh V., Kumar V. Integrated Biorefineries for Repurposing of Food Wastes into Value-added Products. Bioresource Technology 2022:363:127856. https://doi.org/10.1016/j.biortech.2022.127856
Pan F-D., Liu S., Xu Q. M., Chen X. Y., Cheng J. S. Bioconversion of kitchen waste to surfactin via simultaneous enzymolysis and fermentation using mixed-culture of enzyme-producing fungi and Bacillus amyloliquefaciens HM618. Biochem Eng J 2021:172:108036. https://doi.org/10.1016/j.bej.2021.108036
Merrylin J., Preethi G. D. Saratale, Banu J. R. Production of biopolymers and feed protein from food wastes. Food Waste to Valuable Resources: Applications and Management 2020:143–162. https://doi.org/10.1016/B978-0-12-818353-3.00007-9
Kwan T. H., Hu Y., Lin S. Z. K. Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota. Bioresour Technol 2016:217:129–136. https://doi.org/10.1016/j.biortech.2016.01.134
Muniz C. E. S., Santiago Â. M., Gusmão T. A. S., Oliveira H. M. L., Conrado L. de S., de Gusmão R. P. Solid-state fermentation for single-cell protein enrichment of guava and cashew by-products and inclusion on cereal bars. Biocatal Agric Biotechnol 2020:25:101576. https://doi.org/10.1016/j.bcab.2020.101576
Vidal-Antich C., Peces M., Perez-Esteban N., Mata-Alvarez J., Dosta J., Astals S. Impact of food waste composition on acidogenic co-fermentation with waste activated sludge. Science of the Total Environment 2022:849:157920. https://doi.org/10.1016/j.scitotenv.2022.157920
European Commission, Directorate-General for Research and Innovation, A sustainable bioeconomy for Europe – Strengthening the connection between economy, society and the environment – Updated bioeconomy strategy, Publications Office, 2018. https://data.europa.eu/doi/10.2777/792130
Areniello M., Matassa S., Esposito G., Lens P. N. L. Biowaste upcycling into second-generation microbial protein through mixed-culture fermentation. Trends Biotechnol 2022:41(2):197–213. https://doi.org/10.1016/j.tibtech.2022.07.008
Heureux A.M.C., Matsumoto T.K. Toward a zero-waste model: Potential for microorganism growth on agricultural waste products in Hawaii. Algal Research 2022:62:102640. https://doi.org/10.1016/j.algal.2022.102640
Fernandes De Brito L., Qin W., Sanitá M., Ca L. M., Coutinho De Lucas R., Lima M. S. Co-cultivation, Co-culture, Mixed Culture, and Microbial Consortium of Fungi: An Understudied Strategy for Biomass Conversion. Frontiers in Microbiology 2022:12:837685. https://doi.org/10.3389/fmicb.2021.837685
Fang W., Zhang X., Zhang P., Wan J., Guo H., Ghasimi Dara S.M., Morera X. C. Overview of key operation factors and strategies for improving fermentative volatile fatty acid production and product regulation from sewage sludge. Journal of Environmental Sciences 2020:87:93–111. https://doi.org/10.1016/j.jes.2019.05.027
Peces M., Pozo G., Koch K., Dosta J., Astals S. Exploring the potential of co-fermenting sewage sludge and lipids in a resource recovery scenario. Bioresour Technol 2019:300:122561. https://doi.org/10.1016/j.biortech.2019.122561
Perez-Esteban N., et al. Potential of anaerobic co-fermentation in wastewater treatments plants: A review. Science of the Total Environment 2022:813:152498. https://doi.org/10.1016/j.scitotenv.2021.152498
Tu W. C., Hallett J. P. Recent advances in the pretreatment of lignocellulosic biomass. Curr Opin Green Sustain Chem 2019:20:11–17. https://doi.org/10.1016/j.cogsc.2019.07.004
Madhavan A., et al. Design of novel enzyme biocatalysts for industrial bioprocess: Harnessing the power of protein engineering, high throughput screening and synthetic biology. Bioresource Technology 2021:325:124617. https://doi.org/10.1016/j.biortech.2020.124617
Ma Y., Cai W., Liu Y. An integrated engineering system for maximizing bioenergy production from food waste. Applied Energy 2017:206:83–89. https://doi.org/10.1016/j.apenergy.2017.08.190
Saha B. C., Qureshi N., Kennedy G. J., Cotta M. A. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. Int Biodeterior Biodegradation 2016:109:29–35. https://doi.org/10.1016/j.ibiod.2015.12.020
Chen H., Fu X. Industrial technologies for bioethanol production from lignocellulosic biomass. Renewable and Sustainable Energy Reviews 2016:57:468–478. https://doi.org/10.1016/j.rser.2015.12.069
Tian fei X., Fang Z., Guo F. Impact and prospective of fungal pre-treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels, Bioproducts and Biorefining 2012:6(3):335–350. https://doi.org/10.1002/bbb.346
Pleissner D., Kwan T. H., Lin C. S. K. Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresource Technology 2014:158:48–54. https://doi.org/10.1016/j.biortech.2014.01.139
Leung C. C. J., Cheung A. S. Y., Zhang A. Y. Z., Lam K. F., Lin C. S. K. Utilisation of waste bread for fermentative succinic acid production. Biochem Eng J 2012:65:10–15. https://doi.org/10.1016/j.bej.2012.03.010
Yang R., Chen Z., Hu P., Zhang S., Luo G. Two-stage fermentation enhanced single-cell protein production by Yarrowia lipolytica from food waste. Bioresour Technol 2022:361:127677. https://doi.org/10.1016/j.biortech.2022.127677
de O. Finco A. M., Mamani L. D. G., de Carvalho J. C., de Melo Pereira G. V., Thomaz-Soccol V., Soccol C. R. Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology 2017:37(5):656–671. https://doi.org/10.1080/07388551.2016.1213221
Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environmental and Climate Technologies 2018:22(1):149–164. https://doi.org/10.2478/rtuect-2018-0010
Carrasco M., Villarreal P., Barahona S., Alcaíno J., Cifuentes V., Baeza M. Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiol 2016:16:21. https://doi.org/10.1186/s12866-016-0640-8
Arman Z., et al. Screening of amylolytic and cellulolytic yeast from Dendrobium spathilingue in Bali Botanical Garden, Indonesia. AIP Conf. Proc. 2020:2242:050013. https://doi.org/10.1063/5.0007802
Touijer H., Benchemsi N., Ettayebi M., Janati Idrissi A., Chaouni B., Bekkari H. Thermostable Cellulases from the Yeast Trichosporon sp. Enzyme Res 2019: Article 2790414. https://doi.org/10.1155/2019/2790414
Doriya K., Jose N., Gowda M., Kumar D. S. Solid-State Fermentation vs Submerged Fermentation for the Production of L-Asparaginase. Advances in Food and Nutrition Research 2016:78:115–135. https://doi.org/10.1016/bs.afnr.2016.05.003
O-Thong S., Mamimin C., Kongjan P., Reungsang A. Two-stage fermentation process for bioenergy and biochemicals production from industrial and agricultural wastewater. Advances in Bioenergy 2020:5:249–308. https://doi.org/10.1016/bs.aibe.2020.04.007
Martín-Sampedro R., et al. Endophytic Fungi as Pretreatment to Enhance Enzymatic Hydrolysis of Olive Tree Pruning. BioMed Research International 2017: Article 9727581. https://doi.org/10.1155/2017/9727581
El Gnaoui Y., Frimane A., Lahboubi N., Herrmann C., Barz M., El Bari H. Biological pre-hydrolysis and thermal pretreatment applied for anaerobic digestion improvement: Kinetic study and statistical variable selection. Cleaner Waste Systems 2022:2:100005. https://doi.org/10.1016/j.clwas.2022.100005
Pleissner D., Lam W. C., Sun Z., Lin C. S. K. Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresource Technology 2013:137:139–146. https://doi.org/10.1016/j.biortech.2013.03.088
Su W., et al. Dynamics of defatted rice bran in physicochemical characteristics, microbiota and metabolic functions during two-stage co-fermentation. Int J Food Microbiol 2021:362:109489. https://doi.org/10.1016/j.ijfoodmicro.2021.109489
Yin Y., Liu Y. J., Meng S. J., Kiran E. U., Liu Y. Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion. Appl Energy 2016:179:1131–1137. https://doi.org/10.1016/j.apenergy.2016.07.083
Souza Filho P. F., Zamani A., Taherzadeh M. J. Edible Protein Production by Filamentous Fungi using Starch Plant Wastewater. Waste Biomass Valorization 2019:10:2487–2496. https://doi.org/10.1007/s12649-018-0265-2
Dorado M. P., Lin S. K. C., Koutinas A., Du C., Wang R., Webb C. Cereal-based biorefinery development: Utilisation of wheat milling by-products for the production of succinic acid. J Biotechnol 2009:143(1):51–59. https://doi.org/10.1016/j.jbiotec.2009.06.009
Godoy M. G., Amorim G. M., Barreto M. S., Freire D. M. G. Agricultural Residues as Animal Feed. Current Developments in Biotechnology and Bioengineering 2018:235–256. https://doi.org/10.1016/B978-0-444-63990-5.00012-8
Zhao G., Ding L. L., Pan Z. H., Kong D. H., Hadiatullah H., Fan Z. C. Proteinase and glycoside hydrolase production is enhanced in solid-state fermentation by manipulating the carbon and nitrogen fluxes in Aspergillus oryzae. Food Chem 2019:271:606–613. https://doi.org/10.1016/j.foodchem.2018.07.199
Peciulyte A., Pisano M., de Vries R. P., Olsson. Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail. Biotechnol Lett 2017:39:1403–1411. https://doi.org/10.1007/s10529-017-2371-9
Sakarika M., et al. Production of microbial protein from fermented grass. Chemical Engineering Journal 2022:433(2):133631. https://doi.org/10.1016/j.cej.2021.133631
Nataraja S., Chetan D. M., Krishnappa M. Effect of temperature on cellulose enzyme activity in crude extracts isolated from solid wastes microbes. Int J Microbiol Res 2010:2(2):44–47. https://doi.org/10.9735/0975-5276.2.2.44-47
Lam W. C., Pleissner D., Sze C., Lin K. Production of Fungal Glucoamylase for Glucose Production from Food Waste. Biomolecules 2013:3:651–661. https://doi.org/10.3390/biom3030651
Ding H. H., Chang S., Liu Y. Biological hydrolysis pretreatment on secondary sludge: Enhancement of anaerobic digestion and mechanism study. Bioresour Technol 2017:244(P1):989–995. https://doi.org/10.1016/j.biortech.2017.08.064
Barapatre S., Rastogi M., Savita, Nandal M. Isolation of fungi and optimization of ph and temperature for cellulase production. Nature Environment and Pollution Technology 2020:19(4):1729–1735. https://doi.org/10.46488/NEPT.2020.v19i04.044
Lin H., Chen W., Ding H. AcalPred: A Sequence-Based Tool for Discriminating between Acidic and Alkaline Enzymes. PLoS One 2013:8(10). https://doi.org/10.1371/journal.pone.0075726
Daniela Q., Federica B., Lofaro F. D. The biology of vascular calcification. International Review of Cell and Molecular Biology 2020:354:261–353. https://doi.org/10.1016/bs.ircmb.2020.02.007
Wang R., et al. Analyzing pepsin degradation assay conditions used for allergenicity assessments to ensure that pepsin susceptible and pepsin resistant dietary proteins are distinguishable. PLoS One 2017:12(2). https://doi.org/10.1371/journal.pone.0171926
Pleissner D., Kwan T. H., Lin C. S. K. Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresour Technol 2014:158:48–54. https://doi.org/10.1016/j.biortech.2014.01.139
Li X., Mettub S., Martin G. J. O., Ashokkumarb M. Ultrasonic pretreatment of food waste to accelerate enzymatic hydrolysis for glucose production. Ultrasonics Sonochemistry 2019:53:77–82. https://doi.org/10.1016/j.ultsonch.2018.12.035
Rahaman A., Kumari A., Zeng X.-A., Farooq M. A., Siddique R., Khalifa I., Siddeeg A., Ali M., Manzoor M. F. Ultrasound based modification and structural-functional analysis of corn and cassava starch. Ultrasonics Sonochemistry 2021:80:105795. https://doi.org/10.1016/j.ultsonch.2021.105795
Hu A., et al. Ultrasonically aided enzymatical effects on the properties and structure of mung bean starch. Innovative Food Science and Emerging Technologies 2013:20:146–151. https://doi.org/10.1016/j.ifset.2013.08.005
Zhu F. Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends Food Sci Technol 2015:43(1):1–17. https://doi.org/10.1016/j.tifs.2014.12.008