Have a personal or library account? Click to login
Waste Cooking Oil as Substrate for Single Cell Protein Production by Yeast Yarrowia lipolytica Cover

Waste Cooking Oil as Substrate for Single Cell Protein Production by Yeast Yarrowia lipolytica

Open Access
|Dec 2020

References

  1. [1] Wei Z., et al. Determination and removal of malondialdehyde and other 2-thiobarbituric acid reactive substances in waste cooking oil. Journal of Food Engineering 2011:107(3–4):379–384. https://doi.org/10.1016/j.jfoodeng.2011.06.03210.1016/j.jfoodeng.2011.06.032
  2. [2] Kumar S., Negi S. Transformation of waste cooking oil into C-18 fatty acids using a novel lipase produced by Penicillium chrysogenum through solid state fermentation. Biotech 2015:5:847–851. https://doi.org/10.1007/s13205-014-0268-z10.1007/s13205-014-0268-z456963128324521
  3. [3] de Araujo M. C. D., et al. Biodiesel production from used cooking oil: a review. Renewable and Sustainable Energy Reviews 2013:27:445–452. https://doi.org/10.1016/j.rser.2013.06.01410.1016/j.rser.2013.06.014
  4. [4] Nanou K., Roukas T. Waste cooking oil: A new substrate for carotene production by Blakeslea trispora in submerged fermentation. Bioresource Technology 2016:203:198–203. https://doi.org/10.1016/j.biortech.2015.12.05310.1016/j.biortech.2015.12.05326724551
  5. [5] Phan A. N., Phan T. M. Biodiesel production from waste cooking oils. Fuel 2008:87(17–18):3490–3496. https://doi.org/10.1016/j.fuel.2008.07.00810.1016/j.fuel.2008.07.008
  6. [6] Talebian-Kiakalaieh A., Amin N. A. S., Mazaheri H. A review on novel processes of biodiesel production from waste cooking oil. Applied Energy 2013:104:683–710. https://doi.org/10.1016/j.apenergy.2012.11.06110.1016/j.apenergy.2012.11.061
  7. [7] Sheinbaum-Pardo C., Calderon-Irazoque A., Ramirez-Suarez M. Potential of biodiesel from waste cooking oil in Mexico. Biomass Bioenergy 2013:56:230–238. https://doi.org/10.1016/j.biombioe.2013.05.00810.1016/j.biombioe.2013.05.008
  8. [8] Cvengros J., Cvengrosova Z. Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids. Biomass Bioenergy 2004:27(2):173–181. https://doi.org/10.1016/j.biombioe.2003.11.00610.1016/j.biombioe.2003.11.006
  9. [9] Kulkarni M. G., Dalai A. K. Waste cooking oil - An economical source for biodiesel: a review. Industrial and Engineering Chemistry Research 2006:45:2901–2913. https://doi.org/10.1021/ie051052610.1021/ie0510526
  10. [10] Choe E., Min D. B. Chemistry of deep-fat frying oils. Journal of Food Science 2007:72(5):77–86. https://doi.org/10.1111/j.1750-3841.2007.00352.x10.1111/j.1750-3841.2007.00352.x17995742
  11. [11] Steinberg D., Witztum J. L. Lipoproteins and atherogenesis: current concepts. Journal of American Medicine Association 1990:246:3047–3052.10.1001/jama.264.23.3047
  12. [12] Grootveld M., et al. Health effects of oxidized heated oils. Foodservice Research International 2001:41–55. https://doi.org/10.1111/j.1745-4506.2001.tb00028.x10.1111/j.1745-4506.2001.tb00028.x
  13. [13] Maddikeri G. L., Gogate P. R., Pandit A. B. Improved synthesis of sophorolipids from waste cooking oil using fed batch approach in the presence of ultrasound. Chemical Engineering Journal 2015:263:479–487. https://doi.org/10.1016/j.cej.2014.11.01010.1016/j.cej.2014.11.010
  14. [14] Bailey A. E. Bailey’s Industrial Oil and Fat Products. New York: John Wiley & Sons, 2005.
  15. [15] Torun M., et al. Serum beta-carotene, vitamin-E, vitamin-C and malondialdehyde levels in several types of cancer. Journal of Clinical Pharmacy and Therapeutics 1995:20(5):259–263. https://doi.org/10.1111/j.1365-2710.1995.tb00660.x10.1111/j.1365-2710.1995.tb00660.x
  16. [16] Papastergiadis A., et al. Malondialdehyde Measurement in Oxidized Foods: Evaluation of the Spectrophotometric Thiobarbituric Acid Reactive Substances (TBARS) Test in Various Foods. Journal of agricultural and food chemistry 2012:60:9589–9594. https://doi.org/10.1021/jf302451c10.1021/jf302451c
  17. [17] Frankel N.E. Lipid Oxidation. UK: The Oily Press, 2005.10.1533/9780857097927
  18. [18] Esterbauer H., Schaur R. J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology and Medicine 1991:11(1):81–128. https://doi.org/10.1016/0891-5849(91)90192-610.1016/0891-5849(91)90192-6
  19. [19] Uchida K. Histidine and lysine as targets of oxidative modification. Amino Acids 2003:25(3–4):249–257. https://doi.org/10.1007/s00726-003-0015-y10.1007/s00726-003-0015-y14661088
  20. [20] Giera M., Lingeman H., Niessen W. M. Recent advancements in the LC- and GC-based analysis of malondialdehyde (MDA): A brief overview. Chromatographia 2012:75(9–10):433–440. https://doi.org/10.1007/s10337-012-2237-110.1007/s10337-012-2237-1333605422593603
  21. [21] Botsoglou N. A., et al. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipidperoxidation in animal tissue, food, and feedstuff samples. Journal of Agricultural and Food Chemistry 1994:42(9):1931–1937. https://doi.org/10.1021/jf00045a01910.1021/jf00045a019
  22. [22] Guillen-Sans R., Guzman-Chozas M. The thiobarbituric acid (TBA) reaction in foods: A review. Critical Reviews for Food Science and Nutritions 1998:38(4):315–330. https://doi.org/10.1080/1040869989127422810.1080/104086998912742289626489
  23. [23] Du Z., Bramlage W. J. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. Journal of Agricultural and Food Chemistry 1992:40(9):1566–1570. https://doi.org/10.1021/jf00021a01810.1021/jf00021a018
  24. [24] Devasagayam T. P. A., Boloor K. K., Ramasarma T. Methods for estimating lipid peroxidation: An analysis of merits and demerits. Indian Journal of Biochemistry & Biophysics 2003:40:300–308.
  25. [25] Jacobson M., Koehler H. H. Development of rancidity during short-time storage of cooked poultry meat. Journal of Agricultural and Food Chemistry 1970:18(6):1069–1072. https://doi.org/10.1021/jf60172a01010.1021/jf60172a010
  26. [26] Kerth C. R., Legako J. Flavor Development and Relating Volatile compounds to Sensory Evaluation. American Meat Science Association 2015:27–31.
  27. [27] Khidhir Z., et al. Lipid oxidation as a quality indicator in meats for Five local Fresh Fish. Presented at the 1st Scientific Conference for Food Sciences, Tikrit, Iraq, 2013.
  28. [28] Liu X. Y., Lv J. S., Xu J. X. Effects of osmotic pressure and pH on citric acid and erythritol production from waste cooking oil by Yarrowia lipolytica. Engineering in Life and Science 2018:18(6):344–52. https://doi.org/10.1002/elsc.20170011410.1002/elsc.201700114699940032624914
  29. [29] Patel A., Matsakas L. A comparative study on de novo and ex novo lipid fermentation by oleaginous yeast using glucose and sonicated waste cooking oil. Ultrasonics – Sonochemistry 2019:52:364–374. https://doi.org/10.1016/j.ultsonch.2018.12.01010.1016/j.ultsonch.2018.12.01030559080
  30. [30] Katre G., et al. Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica 3589 as a potential feedstock for biodiesel. AMB Express 2012:2:36. https://doi.org/10.1186/2191-0855-2-3610.1186/2191-0855-2-36351968422812483
  31. [31] Katre G., et al. Optimization of the in situ transesterification step for biodiesel production using biomass of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil. Energy 2018:142:944–952. https://doi.org/10.1016/j.energy.2017.10.08210.1016/j.energy.2017.10.082
  32. [32] Papanikolaou S., et al. Industrial derivative of tallow: a promising renewable substrate for microbial lipid, single-cell protein and lipase production by Yarrowia lipolytica. Electronic Journal of Biotechnology 2007:10(3):426–435. https://doi.org/10.2225/vol10-issue3-fulltext-810.2225/vol10-issue3-fulltext-8
  33. [33] Yan J., et al. Engineering Yarrowia lipolytica to Simultaneously Produce Lipase and Single Cell Protein from Agroindustrial Wastes for Feed. Scientific reports 2018:8:758. https://doi.org/10.1038/s41598-018-19238-910.1038/s41598-018-19238-9576871529335453
  34. [34] Liu X., et al. A cost-effective process for the coproduction of erythritol and lipase with Yarrowia lipolytica M53 from waste cooking oil. Food and Bioproducts Processing 2017:103:86–94. https://doi.org/10.1016/j.fbp.2017.03.00210.1016/j.fbp.2017.03.002
  35. [35] Dominguez A., et al. Biodegradation and utilization of waste cooking oil by Yarrowia lipolytica CECT 1240. European Journal of Lipid Science and Technology 2010:112:1200–1208. https://doi.org/10.1002/ejlt.20100004910.1002/ejlt.201000049
  36. [36] Suci M., Arbianti R., Hermansyah H. Lipase production from Bacillus subtilis with submerged fermentation using waste cooking oil. IOP Conf. Series: Earth and Environmental Science 2018:105:012126. https://doi.org/10.1088/1755-1315/105/1/01212610.1088/1755-1315/105/1/012126
  37. [37] Liu X., et al. Citric Acid Production in Yarrowia lipolytica SWJ-1b Yeast When Grown on Waste Cooking Oil. Applied Biochemistry and Biotechnology 2014:175(5). https://doi.org/10.1007/s12010-014-1430-010.1007/s12010-014-1430-0
  38. [38] Anupama, Ravindra P. Value-added food: single cell protein. Biotechnology Advances 2000:18:459–479. https://doi.org/10.1016/S0734-9750(00)00045-810.1016/S0734-9750(00)00045-8
  39. [39] Ritala A., et al. Single Cell Protein—State-of-the-Art, Industrial Landscape and Patents 2001–2016. Frontiers in Microbiology 2017:8:2009. https://doi.org/10.3389/fmicb.2017.0200910.3389/fmicb.2017.02009
  40. [40] Ugalde U. O., Castrillo J. I. Applied mycology and biotechnology. Agriculture and Food Production 2002:2:123–149.10.1016/S1874-5334(02)80008-9
  41. [41] Mekonnen M. M., Howkstra A. Y. Water footprint benchmarks for crop production: A first global assessment. Ecological Indicators 2014:46:214–223. https://doi.org/10.1016/j.ecolind.2014.06.01310.1016/j.ecolind.2014.06.013
  42. [42] Tilman D. Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proceedings of the National Academy of Sciences of the United States of America 1999:96(11):5995–6000. https://doi.org/10.1073/pnas.96.11.599510.1073/pnas.96.11.59953421810339530
  43. [43] Vermeulen S. J., Campbell B. M., Ingram J. S. I. Climate Change and Food Systems. Annual Review of Environment and Resources 2012:37:195–222.10.1146/annurev-environ-020411-130608
  44. [44] Sitepu I. R., et al. Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnology Advances 2014:32(7):1336–1360. https://doi.org/10.1016/j.biotechadv.2014.08.00310.1016/j.biotechadv.2014.08.00325172033
  45. [45] Patel A., et al. Synergistic effect of fermentable and non-fermentable carbon sources enhances TAG accumulation in oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresource Technology 2015:188:136–144. https://doi.org/10.1016/j.biortech.2015.02.06210.1016/j.biortech.2015.02.06225769691
  46. [46] Papanikolaou S., Aggelis G. Yarrowia lipolytica: a model microorganism used for the production of tailor-made lipids. European Journal of Lipid Science and Technology 2010:112:639–654. https://doi.org/10.1002/ejlt.20090019710.1002/ejlt.200900197
  47. [47] Fickers P., et al. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Research 2005:5:527–543. https://doi.org/10.1016/j.femsyr.2004.09.00410.1016/j.femsyr.2004.09.00415780653
  48. [48] Thevenieau F., et al. Uptake and assimilation of hydrophobic substrates by the oleaginous yeast Yarrowia lipolytica. Handbook of Hydrocarbon and Lipid Microbiology 2010:1:1513–1661. https://doi.org/10.1007/978-3-540-77587-4_10410.1007/978-3-540-77587-4_104
  49. [49] Garti N., et al. Improved oil solubilization in oil/water food grade microemulsions in the presence of polyols and ethanol. Journal of Agriculture and Food Chemistry 2001:49:2552–2562. https://doi.org/10.1021/jf001390b10.1021/jf001390b11368635
  50. [50] Sureshkumar K., Velraj R., Ganesan R. Performance and exhaust emission characteristics of a CI engine fuelled with Pongamia pinnata methyl ester (PPME) and its blends with diesel. Renewable Energy 2008:33(10):2294–2302. https://doi.org/10.1016/j.renene.2008.01.01110.1016/j.renene.2008.01.011
  51. [51] Sestric R., et al. Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresource Technology 2014:164:41–46. https://doi.org/10.1016/j.biortech.2014.04.01610.1016/j.biortech.2014.04.01624835917
  52. [52] Spalvins K., Ivanovs K., Blumberga D. Single cell protein production from waste biomass: review of various agricultural by-products. Agronomy Research 2018:16(S2):1493–1508. https://doi.org/10.15159/AR.18.129
  53. [53] Spalvins K., Zihare L., Blumberga D. Single cell protein production from waste biomass: comparison of various industrial by-products. Energy Procedia 2018:147:409–418. https://doi.org/10.1016/j.egypro.2018.07.11110.1016/j.egypro.2018.07.111
  54. [54] Spalvins K., Blumberga D. Single cell oil production from waste biomass: review of applicable agricultural byproducts. Agronomy Research 2019:17(3):833–849. https://doi.org/10.15159/AR.19.039
  55. [55] Spalvins K., Vamza I., Blumberga D. Single cell oil production from waste biomass: review of applicable industrial by-products. Environmental and Climate Technologies 2019:23(2):325–337. https://doi.org/10.2478/rtuect-2019-007110.2478/rtuect-2019-0071
DOI: https://doi.org/10.2478/rtuect-2020-0116 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 457 - 469
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Kriss Spalvins, Zane Geiba, Zane Kusnere, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.