Have a personal or library account? Click to login
Representation of learning in the post-digital: students’ dropout predictive models with artificial intelligence algorithms Cover

Representation of learning in the post-digital: students’ dropout predictive models with artificial intelligence algorithms

Open Access
|Jan 2023

References

  1. Aljawarneh, S., Lara, J.A. (2021). Data science for analyzing and improving educational processes. Journal of Computing in Higher Education, 33, 545-550. https://doi.org/10.1007/s12528-021-09299-7 10.1007/s12528-021-09299-7
  2. Baker, R. (2019). Challenges for the Future of Educational Data Mining: The Baker Learning Analytics Prizes. Journal of Educational Data Mining, 11(1), 1-17. https://doi.org/10.5281/zenodo.3554745
  3. Bayne, S. (2015). What’s the matter with ‘technology-enhanced learning’? Learning, Media and Technology, 40(1), 5-20. https://doi.org/10.1080/17439884.2014.915851 10.1080/17439884.2014.915851
  4. Blossfeld, H. P., & Roßbach, H. G. (Eds.). (2019). Education as a Lifelong Process: The German National Educational Panel Study (NEPS), Cham: Springer.10.1007/978-3-658-23162-0
  5. Borghesi, A., Baldo, F., Lombardi, M., Milano, M. (2021). Injective Domain Knowledge in Neural Networks for Trans-precision Computing. Machine Learning, Optimization, and Data Science: 6th International Conference (pp. 587-600), LOD 2020, Cham, Springer. https://doi.org/10.1007/978-3-030-64583-0_52 10.1007/978-3-030-64583-0_52
  6. Brachman, R. J., & Levesque, H. J. (2004). Knowledge Representation and Reasoning. Amsterdam: Elsevier.10.1016/B978-155860932-7/50099-6
  7. Branchetti, L., Ferretti, F., Lemmo, A., Maffia, A., Martignone, F., Matteucci, M., & Mignani, S. (2015). A longitudinal analysis of the Italian national standardized mathematics tests. In Proceeding of CERME9, 1695-1701.
  8. Breiman L., Friedman J.H., Olshen R.A., & Stone C.J. (2017). Classification and regression trees. London, UK: Routledge.10.1201/9781315139470
  9. Cammozzo, A. (2011). Né rizoma, né albero: metafore autopoietiche nella rappresentazione della conoscenza. ZeL Edizioni: Romeo Galassi.
  10. Cramer, F. (2015). What is ‘Postdigital’? In D. M. Berry & M. Dieter (Eds.), Postdigital aesthetics: art, computation, and design. New York: Palgrave Macmillan10.1057/9781137437204_2
  11. Del Bonifro F., Gabbrielli M., Lisanti G., & Zingaro S.P. (2020). Student Dropout Prediction. AIED (1), 129-140.10.1007/978-3-030-52237-7_11
  12. Ertl, B., Hartmann, F. G., & Heine, J. H. (2020). Analyzing Large-Scale Studies: Benefits and Challenges. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.577410 10.3389/fpsyg.2020.577410
  13. Fischman, G. E., Topper, A. M., Silova, I., Goebel, J., & Holloway, J. L. (2019). Examining the influence of international large-scale assessments on national education policies. Journal of Education Policy 34(2), 470-499. doi: 10.1080/02680939.2018.146049310.1080/02680939.2018.1460493
  14. Fuller, S., & Jandrić, P. (2019). The postdigital human: making the history of the future. Postdigital Science and Education, 1(1), 190-217. https://doi.org/10.1007/s42438-018-0003-x.10.1007/s42438-018-0003-x
  15. Inozemtsev, V., Ivleva M. and Ivlev, V. (2017). Artificial Intelligence and the Problem of Computer Representation of Knowledge. Advances in Social Science, Education and Humanities Research, 124, 1151-1157.10.2991/iccessh-17.2017.268
  16. Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy Artificial Intelligence. Government Information Quarterly, 37(3), 101493.10.1016/j.giq.2020.101493
  17. Klašnja-Milićević, A., Ivanović, M., & Budimac, Z. (2017). Data science in education: Big data and learning analytics. Computer Applications in Engineering Education, 25, 1066-1078. https://doi.org/10.1002/cae.21844 10.1002/cae.21844
  18. Knox, J. (2019). What Does the ‘Postdigital’ Mean for Education? Three Critical Perspectives on the Digital, with Implications for Educational Research and Practice. Postdigital Science and Education 1, 357-370. Doi:10.1007/s42438-019-00045-y10.1007/s42438-019-00045-y
  19. Kumar, V., Garg, M. L. (2018). Predictive Analytics: A Review of Trends and Techniques. International Journal of Computer Applications, 182, 31-37.10.5120/ijca2018917434
  20. Lacković, N. (2020). Postdigital Living and Algorithms of Desire. Postdigital Science and Education. https://doi.org/10.1007/s42438-020-00141-4 10.1007/s42438-020-00141-4
  21. Lerman, P. M. (1980). Fitting segmented regression models by grid search. Journal of the Royal Statistical Society: Series C (Applied Statistics), 29, 1, 77-7810.2307/2346413
  22. Motoda, H., & Liu, H. (2002). Feature selection, extraction, and construction. Communication of IICM (Institute of Information and Computing Machinery, Taiwan), 5, 67-72.
  23. OECD (2018). Equity in Education: Breaking down barriers to Social Mobility, Paris: PISA, OECD Publishing.
  24. Panciroli, C., Rivoltella, P.C., Gabbrielli, M. & Zawacki-Richter, O. (2020). Artificial Intelligence and education: new research perspectives. Form@ re-Open Journal per la formazione in rete, 20, 1-12.
  25. Panciroli, C. (2021). Il postdigitale. Società, cultura e didattica. Scholé. Rivista di educazione e studi culturali, LIX(2), 157-166.
  26. Panero, M. (2019). Un’analisi longitudinale dei dati INVALSI di matematica di una stessa coorte alla scuola primaria. Working Paper, 41, 1-19.
  27. Pietsch, W. (2015). Aspects of theory-ladenness in data-intensive science. Philosophy of Science, 82(5), 905-916.10.1086/683328
  28. Popenici, S., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning. https://doi.org/10.1186/s41039-017-0062-8.10.1186/s41039-017-0062-8
  29. Priyam A., Abhijeeta G., Rathee A., & Srivastava S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337
  30. Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. Wires Data Mining and Knowledge Discovery, 10, e1355. https://doi.org/10.1002/widm.1355 10.1002/widm.1355
  31. Ryberg, T. (2021). Postdigital Research, Networked Learning, and Covid-19. Postdigital Science and Education 3(4), 266-271. doi: 10.1007/s42438-021-00223-x
  32. Rivoltella, P.C., & Rossi, P. G. (2019). Il corpo e la macchina. Tecnologia, cultura, educazione. Brescia: Morcelliana.
  33. Shi-Nash, A., Hardoon, D.R. (2016). Data analytics and predictive analytics in the era of big data. Palo Alto, Hwaiyu Geng.10.1002/9781119173601.ch19
  34. Sondhi, P. (2009). Feature construction methods: a survey. sifaka. cs. uiuc. edu, 69, 70-71.
  35. Thomson, S. (2018). Achievement at school and socioeconomic background - an educational perspective. Science Learn 3, 5. https://doi.org/10.1038/s41539-018-0022-0 10.1038/s41539-018-0022-0
  36. Wang, L., Sy, A, Liu, L., & Piech, C. (2017). Learning to Represent Student Knowledge on Programming Exercises Using Deep Learning. Proceedings of the 10th International Conference on Educational Data Mining, 324-329.10.1145/3051457.3053985
  37. Zanellati, A., Zingaro, S.P., Del Bonifro, F., Gabbrielli, M., Levrini, O. & Panciroli, C. (2021). Informing predictive models against Students Dropout. Conference DIDAMATICA 2021, Palermo.
  38. Zaytsev E.I., Khalabiya R.F., Stepanova I.V., & Bunina L.V. (2020). Multi-Agent System of Knowledge Representation and Processing. In: Kovalev S., Tarassov V., Snasel V., Sukhanov A. (eds) Proceedings of the Fourth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’19). IITI 2019. Advances in Intelligent Systems and Computing, vol 1156. Cham: Springer. https://doi.org/10.1007/978-3-030-50097-9_14 10.1007/978-3-030-50097-9_14
  39. Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16, 1-27. doi: 10.1186/s41239-019-0171-0
  40. Zingaro, S., Del Zozzo, A., Del Bonifro, F., & Gabbrielli, M. (2020). Predictive models for effective policy making against university dropout. Form@ re-Open Journal per la formazione in rete, 20(3), 165-175.
DOI: https://doi.org/10.2478/rem-2023-0014 | Journal eISSN: 2037-0849 | Journal ISSN: 2037-0830
Language: English
Page range: 103 - 110
Published on: Jan 28, 2023
Published by: SIREM (Società Italiana di Ricerca sull’Educazione Mediale)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Andrea Zanellati, Anita Macauda, Chiara Panciroli, Maurizio Gabbrielli, published by SIREM (Società Italiana di Ricerca sull’Educazione Mediale)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.