Have a personal or library account? Click to login
A Novel and Ultra-Efficient Design of Reversible Quantum Vedic Multiplier Cover

A Novel and Ultra-Efficient Design of Reversible Quantum Vedic Multiplier

Open Access
|Dec 2025

References

  1. M. Saravanan and K. S. Manic (2014). “Novel reversible variable precision multiplier using reversible logic gates”. Journal of Computer Science, 10: 7, 1135.
  2. V. Nandhini and K. Sambath (2023). “VLSI implementation of multiplier design using reversible logic gate”. Analog Integrated Circuits and Signal Processing, 115: 1, 93–100.
  3. M. Swathi and B. Rudra (2021). “Implementation of reversible logic gates with quantum gates”, in 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, pp. 1557–1563.
  4. R. Landauer (1961). “Irreversibility and heat generation in the computing process”. IBM Journal of Research and Development, 5: 3, 183–191.
  5. N. Radha and M. Maheswari (2020). “An energy efficient multipliers using reversible gates”. Journal of Physics: Conference Series, 1706: 1, 012066.
  6. H. Thapliyal and M. Srinivas (2005). “Novel reversible TSG’ gate and its application for designing components of primitive reversible/quantum ALU”, in 2005 5th International Conference on Information Communications & Signal Processing. IEEE, pp. 1425–1429.
  7. N. U. Ain, S.-S. Ahmadpour, N. J. Navimipour, E. Diakina, and S. R. Kassa (2025). “Secure quantum-based adder design for protecting machine learning systems against side-channel attacks”. Applied Soft Computing, 169, 112554.
  8. S.-S. Ahmadpour, D. B. Avval, M. Darbandi, N. J. Navimipour, N. U. Ain, and S. Kassa (2025). “A new quantum-enhanced approach to AI-driven medical imaging system”. Cluster Computing, 28: 3, 1–13.
  9. N. K. Misra, N. Pathak, B. K. Bhoi, S.-S. Ahmadpour, S. R. Kassa, and N. J. Navimipour (2025). “Nanotechnology QCA-based sub-components of processor design and application of futuristic low-power design”. Facta Universitatis, Series: Electronics and Energetics, 38: 1, 163–186.
  10. S. S. Ahmadpour et al. (2025). “A nano-design of a quantum-based arithmetic and logic unit for enhancing the efficiency of the future IoT applications”. AIP Advances, 15, 3.
  11. S.-S. Ahmadpour et al. (2025). “A new median filter circuit design based on atomic silicon quantum-dot for digital image processing and IoT applications”. IEEE Internet of Things Journal.
  12. H. Rasmi, M. Mosleh, N. Jafari Navimipour, and M. Kheyrandish (2024). “An ultra efficient 2:1 multiplexer using bar-shaped pattern in atomic silicon dangling bond technology”. The Journal of Supercomputing, 80: 13, 18347–18364.
  13. H. Rasmi, M. Mosleh, N. J. Navimipour, and M. Kheyrandish (2024). “Towards atomic scale quantum dots in silicon: an ultra-efficient and robust subtractor using proposed P-shaped pattern”. IEEE Transactions on Nanotechnology.
  14. H. Rasmi, M. Mosleh, N. J. Navimipour, and M. Kheyrandish (2025).“Towards a scalable and efficient full-adder structure in atomic silicon dangling band technology”. Nano Communication Networks, 43, 100561.
  15. M. Alharbi, G. Edwards, and R. Stocker (2023). “Reversible quantum-dot cellular automata-based arithmetic logic unit”. Nanomaterials, 13: 17, 2445.
  16. A. N. Bahar, S. Waheed, and N. Hossain (2015). “A new approach of presenting reversible logic gate in nanoscale”. SpringerPlus, 4, 1–7.
  17. C. H. Bennett (1973). “Logical reversibility of computation”. IBM Journal of Research and Development, 17: 6, 525–532.
  18. A. Hawash, A. Awad, and B. Abdalhaq (2020). “Reversible circuit synthesis time reduction based on subtreecircuit mapping”. Applied Sciences, 10: 12, 4147.
  19. G. Renganayaki, R. Korah, and S. Salivahanan (2018). “Design and implementation of a reversible logic circuit and its power analysis using conventional CMOS and adiabatic logic”. Journal of Computational and Theoretical Nanoscience, 15: 1, 317–323.
  20. M. Valinataj (2017). “Novel parity-preserving reversible logic array multipliers”. The Journal of Supercomputing, 73: 11, 4843–4867.
  21. M. Valinataj, M. Mirshekar, and H. Jazayeri (2016). “Novel low-cost and fault-tolerant reversible logic adders”. Computers & Electrical Engineering, 53: 56–72.
  22. M. Noorallahzadeh, M. Mosleh, and K. Datta (2024). “A new design of parity-preserving reversible multipliers based on multiple-control toffoli synthesis targeting emerging quantum circuits”. Frontiers of Computer Science, 18: 6, 186908.
  23. M. Noorallahzadeh, M. Mosleh, N. K. Misra, and A. Mehranzadeh (2023). “A novel design of reversible quantum multiplier based on multiple-control toffoli synthesis”. Quantum Information Processing, 22: 4, 167.
  24. A. N. Al-Rabadi (2012). Reversible Logic Synthesis: From Fundamentals to Quantum Computing. Springer Science & Business Media.
  25. N. K. Misra, B. K. Bhoi, and S. R. Kassa (2024). “Utilizing a novel universal quantum gate in the design of fault-tolerant architecture”. Nano Communication Networks, 39, 100482.
  26. A. Nandal, T. Vigneswaran, and A. K. Rana (2014). “Booth multiplier using reversible logic with low power and reduced logical complexity”. Indian Journal of Science and Technology, 7: 4, 525.
  27. B. Parhami (2006). “Fault-tolerant reversible circuits”, in 2006 Fortieth Asilomar Conference on Signals, Systems and Computers. IEEE, pp. 1726–1729.
  28. H. Thapliyal and N. Ranganathan (2013). “Design of efficient reversible logic-based binary and BCD adder circuits”. ACM Journal on Emerging Technologies in Computing Systems (JETC), 9: 3, 1–31.
  29. M. Haghparast and M. Shams (2013). “A novel nanometric parity preserving reversible Vedic multiplier”. Journal of Basic Applied Sciences and Research, 3, 771–776.
  30. E. PourAliAkbar, K. Navi, M. Haghparast, and M. Reshadi, “Novel designs of fast parity-preserving reversible vedic multiplier”. 2019.
  31. Z. Ariafar and M. Mosleh (2019). “Effective designs of reversible vedic multiplier”. International Journal of Theoretical Physics, 58: 8, 2556–2574.
  32. M. Rashno, M. Haghparast, and M. Mosleh (2021). “Designing of parity preserving reversible vedic multiplier”. International Journal of Theoretical Physics, 60: 8, 3024–3040.
  33. M. Noorallahzadeh, M. Mosleh, S. S. Ahmadpour, J. Pal, and B. Sen (2023). “A new design of parity preserving reversible Vedic multiplier targeting emerging quantum circuits”. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 36: 5, e3089.
  34. “Qiskit.” https://qiskit.org.
  35. A. Cross, “The IBM Q experience and QISKit open-source quantum computing software”, in APS March Meeting Abstracts, 2018, L58. 003.
  36. Y. Jaradat, M. Alia, M. Masoud, A. Mansrah, I. Jannoud, and O. Alheyasat (2023). “Roadmap for simulating quantum circuits utilising IBM’s Qiskit library: Programming approach”. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 26, 624–632.
  37. “BM Quantum.” https://quantum-computing.ibm.com.”
  38. R. P. Feynman (1986). “Quantum mechanical computers”. Foundations of Physics, 16: 6, 507–532.
  39. T. Toffoli (1980). “Reversible computing”, in International Colloquium on Automata, Languages, and Programming. Springer, pp. 632–644.
  40. D. M. Miller, D. Maslov, and G. W. Dueck (2003). “A transformation based algorithm for reversible logic synthesis”, in Proceedings of the 40th Annual Design Automation Conference, pp. 318–323.
  41. M. Noorallahzadeh and M. Mosleh (2021). “Efficient designs of reversible shift register circuits with low quantum cost”. Journal of Circuits, Systems and Computers, 30: 12, 2150215.
  42. M. Noorallahzadeh and M. Mosleh (2025). “Synthesis of a reversible quantum Vedic multiplier on IBM quantum computers”. Scientific Reports, 15, 1, 18897.
  43. S. F. Naz and A. P. Shah (2023). “Reversible gates: A paradigm shift in computing”. IEEE Open Journal of Circuits and Systems, 4, 241–257.
  44. A. Kaltehei, M. Kurt, A. Gen ten, and S. akmak (2025). “Construction of Boolean logic gates using QFT-based adder architecture”. arXiv preprint arXiv:2504.17090.
  45. R. Wille, A. Chattopadhyay, and R. Drechsler (2016). “From reversible logic to quantum circuits: Logic design for an emerging technology”, in 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS). IEEE, pp. 268–274.
  46. A. Barenco et al. (1995). “Elementary gates for quantum computation”. Physical Review A, 52: 5, 3457.
  47. M. M. Rahman and G. W. Dueck (2013). “Properties of quantum templates”, in Reversible Computation: 4th International Workshop, RC 2012, Copenhagen, Denmark, July 2-3, 2012. Revised Papers 4. Springer, pp. 125137.
  48. D. Maslov, G. W. Dueck, and D. M. Miller (2005). “Toffoli network synthesis with templates”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24: 6, 807–817.
  49. M. M. Rahman, A. Banerjee, G. W. Dueck, and A. Pathak (2011). “Two-qubit quantum gates to reduce the quantum cost of reversible circuit”, in 2011 41st IEEE International Symposium on Multiple-Valued Logic, IEEE, pp. 86–92.
  50. M. Lewandowski, N. Ranganathan, and M. Morrison (2013). “Behavioral model of integrated qubit gates for quantum reversible logic design”, in 2013 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), IEEE, pp. 194–199.
  51. W. N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski (2006). “Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25: 9, 1652–1663.
  52. Y. Wang et al.(2025). “A nano-scale design of Vedic multiplier for electrocardiogram signal processing based on a quantum technology”. APL Materials, 13, 3.
  53. M. Rashno, M. Haghparast, and M. Mosleh (2020). “A new design of a low-power reversible Vedic multiplier”. International Journal of Quantum Information, 18: 03, 2050002.
  54. G. G. Kumar and V. Charishma (2012). “Design of high speed vedic multiplier using vedic mathematics techniques”. International Journal of Scientific and Research Publications, 3, 1.
  55. M. Haghparast and A. Bolhassani (2016). “On design of parity preserving reversible adder circuits”. International Journal of Theoretical Physics, 55: 12, 5118–5135.
  56. B. Sen, S. Ganeriwal, and B. K. Sikdar (2013). “Reversible logic-based fault-tolerant nanocircuits in QCA”. International Scholarly Research Notices, 2013: 1, 850267.
DOI: https://doi.org/10.2478/qic-2025-0030 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 552 - 567
Submitted on: Apr 1, 2025
|
Accepted on: Oct 11, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Mojtaba Noorallahzadeh, Mohammad Mosleh, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.