References
- M. Saravanan and K. S. Manic (2014). “Novel reversible variable precision multiplier using reversible logic gates”. Journal of Computer Science, 10: 7, 1135.
- V. Nandhini and K. Sambath (2023). “VLSI implementation of multiplier design using reversible logic gate”. Analog Integrated Circuits and Signal Processing, 115: 1, 93–100.
- M. Swathi and B. Rudra (2021). “Implementation of reversible logic gates with quantum gates”, in 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, pp. 1557–1563.
- R. Landauer (1961). “Irreversibility and heat generation in the computing process”. IBM Journal of Research and Development, 5: 3, 183–191.
- N. Radha and M. Maheswari (2020). “An energy efficient multipliers using reversible gates”. Journal of Physics: Conference Series, 1706: 1, 012066.
- H. Thapliyal and M. Srinivas (2005). “Novel reversible TSG’ gate and its application for designing components of primitive reversible/quantum ALU”, in 2005 5th International Conference on Information Communications & Signal Processing. IEEE, pp. 1425–1429.
- N. U. Ain, S.-S. Ahmadpour, N. J. Navimipour, E. Diakina, and S. R. Kassa (2025). “Secure quantum-based adder design for protecting machine learning systems against side-channel attacks”. Applied Soft Computing, 169, 112554.
- S.-S. Ahmadpour, D. B. Avval, M. Darbandi, N. J. Navimipour, N. U. Ain, and S. Kassa (2025). “A new quantum-enhanced approach to AI-driven medical imaging system”. Cluster Computing, 28: 3, 1–13.
- N. K. Misra, N. Pathak, B. K. Bhoi, S.-S. Ahmadpour, S. R. Kassa, and N. J. Navimipour (2025). “Nanotechnology QCA-based sub-components of processor design and application of futuristic low-power design”. Facta Universitatis, Series: Electronics and Energetics, 38: 1, 163–186.
- S. S. Ahmadpour et al. (2025). “A nano-design of a quantum-based arithmetic and logic unit for enhancing the efficiency of the future IoT applications”. AIP Advances, 15, 3.
- S.-S. Ahmadpour et al. (2025). “A new median filter circuit design based on atomic silicon quantum-dot for digital image processing and IoT applications”. IEEE Internet of Things Journal.
- H. Rasmi, M. Mosleh, N. Jafari Navimipour, and M. Kheyrandish (2024). “An ultra efficient 2:1 multiplexer using bar-shaped pattern in atomic silicon dangling bond technology”. The Journal of Supercomputing, 80: 13, 18347–18364.
- H. Rasmi, M. Mosleh, N. J. Navimipour, and M. Kheyrandish (2024). “Towards atomic scale quantum dots in silicon: an ultra-efficient and robust subtractor using proposed P-shaped pattern”. IEEE Transactions on Nanotechnology.
- H. Rasmi, M. Mosleh, N. J. Navimipour, and M. Kheyrandish (2025).“Towards a scalable and efficient full-adder structure in atomic silicon dangling band technology”. Nano Communication Networks, 43, 100561.
- M. Alharbi, G. Edwards, and R. Stocker (2023). “Reversible quantum-dot cellular automata-based arithmetic logic unit”. Nanomaterials, 13: 17, 2445.
- A. N. Bahar, S. Waheed, and N. Hossain (2015). “A new approach of presenting reversible logic gate in nanoscale”. SpringerPlus, 4, 1–7.
- C. H. Bennett (1973). “Logical reversibility of computation”. IBM Journal of Research and Development, 17: 6, 525–532.
- A. Hawash, A. Awad, and B. Abdalhaq (2020). “Reversible circuit synthesis time reduction based on subtreecircuit mapping”. Applied Sciences, 10: 12, 4147.
- G. Renganayaki, R. Korah, and S. Salivahanan (2018). “Design and implementation of a reversible logic circuit and its power analysis using conventional CMOS and adiabatic logic”. Journal of Computational and Theoretical Nanoscience, 15: 1, 317–323.
- M. Valinataj (2017). “Novel parity-preserving reversible logic array multipliers”. The Journal of Supercomputing, 73: 11, 4843–4867.
- M. Valinataj, M. Mirshekar, and H. Jazayeri (2016). “Novel low-cost and fault-tolerant reversible logic adders”. Computers & Electrical Engineering, 53: 56–72.
- M. Noorallahzadeh, M. Mosleh, and K. Datta (2024). “A new design of parity-preserving reversible multipliers based on multiple-control toffoli synthesis targeting emerging quantum circuits”. Frontiers of Computer Science, 18: 6, 186908.
- M. Noorallahzadeh, M. Mosleh, N. K. Misra, and A. Mehranzadeh (2023). “A novel design of reversible quantum multiplier based on multiple-control toffoli synthesis”. Quantum Information Processing, 22: 4, 167.
- A. N. Al-Rabadi (2012). Reversible Logic Synthesis: From Fundamentals to Quantum Computing. Springer Science & Business Media.
- N. K. Misra, B. K. Bhoi, and S. R. Kassa (2024). “Utilizing a novel universal quantum gate in the design of fault-tolerant architecture”. Nano Communication Networks, 39, 100482.
- A. Nandal, T. Vigneswaran, and A. K. Rana (2014). “Booth multiplier using reversible logic with low power and reduced logical complexity”. Indian Journal of Science and Technology, 7: 4, 525.
- B. Parhami (2006). “Fault-tolerant reversible circuits”, in 2006 Fortieth Asilomar Conference on Signals, Systems and Computers. IEEE, pp. 1726–1729.
- H. Thapliyal and N. Ranganathan (2013). “Design of efficient reversible logic-based binary and BCD adder circuits”. ACM Journal on Emerging Technologies in Computing Systems (JETC), 9: 3, 1–31.
- M. Haghparast and M. Shams (2013). “A novel nanometric parity preserving reversible Vedic multiplier”. Journal of Basic Applied Sciences and Research, 3, 771–776.
- E. PourAliAkbar, K. Navi, M. Haghparast, and M. Reshadi, “Novel designs of fast parity-preserving reversible vedic multiplier”. 2019.
- Z. Ariafar and M. Mosleh (2019). “Effective designs of reversible vedic multiplier”. International Journal of Theoretical Physics, 58: 8, 2556–2574.
- M. Rashno, M. Haghparast, and M. Mosleh (2021). “Designing of parity preserving reversible vedic multiplier”. International Journal of Theoretical Physics, 60: 8, 3024–3040.
- M. Noorallahzadeh, M. Mosleh, S. S. Ahmadpour, J. Pal, and B. Sen (2023). “A new design of parity preserving reversible Vedic multiplier targeting emerging quantum circuits”. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 36: 5, e3089.
- “Qiskit.” https://qiskit.org.
- A. Cross, “The IBM Q experience and QISKit open-source quantum computing software”, in APS March Meeting Abstracts, 2018, L58. 003.
- Y. Jaradat, M. Alia, M. Masoud, A. Mansrah, I. Jannoud, and O. Alheyasat (2023). “Roadmap for simulating quantum circuits utilising IBM’s Qiskit library: Programming approach”. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 26, 624–632.
- “BM Quantum.” https://quantum-computing.ibm.com.”
- R. P. Feynman (1986). “Quantum mechanical computers”. Foundations of Physics, 16: 6, 507–532.
- T. Toffoli (1980). “Reversible computing”, in International Colloquium on Automata, Languages, and Programming. Springer, pp. 632–644.
- D. M. Miller, D. Maslov, and G. W. Dueck (2003). “A transformation based algorithm for reversible logic synthesis”, in Proceedings of the 40th Annual Design Automation Conference, pp. 318–323.
- M. Noorallahzadeh and M. Mosleh (2021). “Efficient designs of reversible shift register circuits with low quantum cost”. Journal of Circuits, Systems and Computers, 30: 12, 2150215.
- M. Noorallahzadeh and M. Mosleh (2025). “Synthesis of a reversible quantum Vedic multiplier on IBM quantum computers”. Scientific Reports, 15, 1, 18897.
- S. F. Naz and A. P. Shah (2023). “Reversible gates: A paradigm shift in computing”. IEEE Open Journal of Circuits and Systems, 4, 241–257.
- A. Kaltehei, M. Kurt, A. Gen ten, and S. akmak (2025). “Construction of Boolean logic gates using QFT-based adder architecture”. arXiv preprint arXiv:2504.17090.
- R. Wille, A. Chattopadhyay, and R. Drechsler (2016). “From reversible logic to quantum circuits: Logic design for an emerging technology”, in 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS). IEEE, pp. 268–274.
- A. Barenco et al. (1995). “Elementary gates for quantum computation”. Physical Review A, 52: 5, 3457.
- M. M. Rahman and G. W. Dueck (2013). “Properties of quantum templates”, in Reversible Computation: 4th International Workshop, RC 2012, Copenhagen, Denmark, July 2-3, 2012. Revised Papers 4. Springer, pp. 125137.
- D. Maslov, G. W. Dueck, and D. M. Miller (2005). “Toffoli network synthesis with templates”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24: 6, 807–817.
- M. M. Rahman, A. Banerjee, G. W. Dueck, and A. Pathak (2011). “Two-qubit quantum gates to reduce the quantum cost of reversible circuit”, in 2011 41st IEEE International Symposium on Multiple-Valued Logic, IEEE, pp. 86–92.
- M. Lewandowski, N. Ranganathan, and M. Morrison (2013). “Behavioral model of integrated qubit gates for quantum reversible logic design”, in 2013 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), IEEE, pp. 194–199.
- W. N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski (2006). “Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25: 9, 1652–1663.
- Y. Wang et al.(2025). “A nano-scale design of Vedic multiplier for electrocardiogram signal processing based on a quantum technology”. APL Materials, 13, 3.
- M. Rashno, M. Haghparast, and M. Mosleh (2020). “A new design of a low-power reversible Vedic multiplier”. International Journal of Quantum Information, 18: 03, 2050002.
- G. G. Kumar and V. Charishma (2012). “Design of high speed vedic multiplier using vedic mathematics techniques”. International Journal of Scientific and Research Publications, 3, 1.
- M. Haghparast and A. Bolhassani (2016). “On design of parity preserving reversible adder circuits”. International Journal of Theoretical Physics, 55: 12, 5118–5135.
- B. Sen, S. Ganeriwal, and B. K. Sikdar (2013). “Reversible logic-based fault-tolerant nanocircuits in QCA”. International Scholarly Research Notices, 2013: 1, 850267.