Have a personal or library account? Click to login
New Approaches to Complexity via Quantum Graphs Cover
By: Eric Culf and  Arthur Mehta  
Open Access
|Dec 2025

References

  1. C. Shannon (1956). “The zero error capacity of a noisy channel.” IRE Transactions on Information Theory, 2: 3, 8–19, DOI: 10.1109/TIT.1956.1056798.
  2. R. Duan, S. Severini, and A. Winter (2013). “Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lová sz number.” IEEE Transactions on Information Theory, 59: 2, 1164–1174. DOI: 10.1109/tit.2012.2221677.
  3. M. Brannan, K. Eifler, C. Voigt, and M. Weber (2022). “Quantum Cuntz-Krieger algebras.” Transactions of the American Mathematical, 9. DOI: https://doi.org/10.1090/btran/88.
  4. A. Connes and W. D. van Suijlekom (2022). “Tolerance relations and operator systems.” Acta Scientiarum Mathematicarum, 88. DOI: https://doi.org/10.1007/s44146-022-00012-3.
  5. A. Chirvasitu and M. Wasilewski (2022). “Random quantum graphs.” Transactions of the American Mathematical Society. DOI: 10.1090/tran/8584.
  6. P. Ganesan (2023). “Spectral bounds for the quantum chromatic number of quantum graphs.” Linear Algebra and its Applications, 674, 351–376. DOI: https://doi.org/10.1016/j.laa.2023.06.007.
  7. M. Kennedy, T. Kolomatski, and D. Spivak (2020). “An infinite quantum Ramsey theorem.” Journal of Operator Theory, 84. DOI: 10.7900/jot.2018dec11.2259.
  8. J. Matsuda (2022). Classification of quantum graphs on M2 and their quantum automorphism groups. Journal of Mathematical Physics, 63, 9. DOI: 10.1063/5.0081059.
  9. D. Stahlke (2016). “Quantum zero-error source-channel coding and non-commutative graph theory.” IEEE Transactions on Information Theory, 62: 1, 554–577. DOI: 10.1109/tit.2015.2496377.
  10. I. G. Todorov and L. Turowska (2020). “Quantum no-signalling correlations and non-local games.” arXiv: 2009.07016.
  11. M. Sipser (2012). Introduction to the Theory of Computation, 3rd ed. Cengage Learning.
  12. A. Y. Kitaev, A. Shen, and M. N. Vyalyi (2002). Classical and Quantum Computation. American Mathematical Society.
  13. A. Broadbent and A. B. Grilo (2022). “QMA-hardness of consistency of local density matrices with applications to quantum zero-knowledge.” SIAM Journal on Computing, 51: 4, 1400–1450. DOI: 10.1137/21m140729x.
  14. S. Bravyi (2006). “Efficient algorithm for a quantum analogue of 2-SAT.” arXiv: quant-ph/0602108.
  15. S. Beigi and P. W. Shor (2008). “On the complexity of computing zero-error and holevo capacity of quantum channels.” arXiv: 0709.2090.
  16. S. Aaronson, S. Beigi, A. Drucker, B. Fefferman, and P. Shor (2009). “The power of unentanglement.” Theory of Computing, 5: 1, 1–42. DOI: 10.4086/toc.2009.v005a001.
  17. H. Kobayashi, K. Matsumoto, and T. Yamakami (2003). “Quantum Merlin-Arthur proof systems: Are multiple Merlins more helpful to Arthur?” In Algorithms and Computation, pp. 189–198, Berlin, Heidelberg. Springer Berlin Heidelberg. DOI: 10.1007/978-3-540-24587-2_21.
  18. A. Chailloux and O. Sattath (2012). “The complexity of the separable Hamiltonian problem.” In 2012 IEEE 27th Conference on Computational Complexity. IEEE. DOI: 10.1109/ccc.2012.42.
  19. G. Gutoski, P. Hayden, K. Milner, and M. M. Wilde (2015). “Quantum interactive proofs and the complexity of separability testing.” Theory of Computing, 11: 1, 59–103. DOI: 10.4086/toc.2015.v011a003.
  20. J. Erdos, A. Katavolos, and V. Shulman (1998). “Rank one subspaces of bimodules over maximal abelian selfadjoint algebras.” Journal of Functional Analysis, 157: 2, 554–587. DOI: https://doi.org/10.1006/jfan.1998.3274.
  21. N. Weaver (2010). “Quantum relations.” Memoirs of the American Mathematical Society, 215. DOI: 10.1090/S0065-9266-2011-00637-4.
  22. N. Weaver (2021). “Quantum graphs as quantum relations.” The Journal of Geometric Analysis, 31: 9, 90909112. DOI: 10.1007/s12220-020-00578-w.
  23. V. I. Paulsen (2002). Completely bounded maps and operator algebras. Cambridge studies in advanced mathematics; 78. Cambridge: Cambridge University Press.
  24. V. Paulsen (2016). “Online course notes: Entanglement and non-locality,” University of Waterloo. Available at www.math.uwaterloo.ca/_vpaulsen/EntanglementAndNonlocality_LectureNotes_7.pdf.
  25. M. Daws (2022). “Quantum graphs: different perspectives, homomorphisms and quantum automorphisms.” arXiv: 2203.08716.
  26. G. Boreland, I. Todorov, and A. Winter (2021). “Sandwich theorems and capacity bounds for non-commutative graphs.” Journal of Combinatorial Theory, Series A, 177, 105302. DOI: 10.1016/j.jcta.2020.105302.
  27. S.-J. Kim and A. Mehta (2019). “Chromatic numbers, Sabidussi’s theorem and Hedetniemi’s conjecture for non-commutative graphs.” Linear Algebra and its Applications, 582, 291–309. DOI: https://doi.org/10.1016/j.laa.2019.08.002.
  28. C. M. Ortiz and V. I. Paulsen (2016). “Quantum graph homomorphisms via operator systems.” Linear Algebra and its Applications, 497, 23–43. DOI: https://doi.org/10.1016/j.laa.2016.02.019.
  29. J. W. Helton, K. P. Meyer, V. I. Paulsen, and M. Satriano (2019). “Algebras, synchronous games, and chromatic numbers of graphs.” New York Journal of Mathematics, 25, 328–361. Available at nyjm.albany.edu/j/2019/25-16.html.
  30. L. Mančinska and D. E. Roberson (2016). “Quantum homomorphisms.” Journal of Combinatorial Theory, Series B, 118, 228–267. DOI: https://doi.org/10.1016/j.jctb.2015.12.009.
  31. M. Brannan, P. Ganesan, and S. J. Harris (2022). “The quantum-to-classical graph homomorphism game.” Journal ofMathematical Physics, 63: 11, 112204. DOI: 10.1063/5.0072288.
  32. M. Coudron and W. Slofstra (2019). “Complexity lower bounds for computing the approximately-commuting operator value of non-local games to high precision.” In A. Shpilka (ed.), 34th Computational Complexity Conference (CCC 2019), volume 137 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 25:1–25: 20, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. DOI: 10.4230/LIPIcs.CCC.2019.25.
  33. Z. Ji, A. Natarajan, T. Vidick, J. Wright, and H. Yuen (2021). “MIP* = RE.” Communications of the ACM, 64: 11, 131–138. DOI: 10.1145/3485628.
  34. H. Mousavi, S. S. Nezhadi, and H. Yuen (2022). “Nonlocal games, compression theorems, and the arithmetical hierarchy.” In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing. ACM. DOI: 10.1145/3519935.3519949.
  35. S. J. Harris (2023). “Universality of graph homomorphism games and the quantum coloring problem.” arXiv: 2305.18116.
  36. H. Galperin and A. Wigderson (1983). “Succinct representations of graphs.” Information and Control, 56: 3, 183–198, DOI: https://doi.org/10.1016/S0019-9958(83)80004-7.
  37. A. W. Harrow and A. Montanaro (2013). “Testing product states, quantum Merlin-Arthur games and tensor optimization.” Journal of the ACM, 60: 1, 1–43. DOI: 10.1145/2432622.2432625.
  38. D. Aharonov and A. B. Grilo (2019). “Stoquastic pcp vs. randomness.” In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1000–1023. IEEE. DOI: 10.1109/FOCS.2019.00065.
  39. S. Bravyi and B. Terhal (2010). “Complexity of stoquastic frustration-free Hamiltonians.” SIAM Journal on Computing, 39: 4, 1462–1485. DOI: 10.1137/08072689X.
  40. A. Broadbent, A. Mehta, and Y. Zhao (2024). “Quantum delegation with an off-the-shelf device.” In 19th Conference on the Theory of Quantum Computation, Communication and Cryptography, DOI: 10.4230/LIPIcs.TQC.2024.12.
  41. A. B. Grilo (2019). “A simple protocol for verifiable delegation of quantum computation in one round.” In 46th International Colloquium on Automata, Languages, and Programming—ICALP 2019, pp. 28. DOI: 10.4230/LIPIcs.ICALP.2019.28.
  42. R. Bassirian, B. Fefferman, and K. Marwaha (2023). “Quantum Merlin-Arthur and proofs without relative phase.” arXiv: 2306.13247.
  43. F. G. d. S. L. Brandão (2008). Entanglement Theory and the Quantum Simulation of Many-Body Physics. PhD thesis, University of London. arXiv: 0810.0026.
  44. L. Lovász (1973). “Coverings and colorings of hypergraphs.” In In Proceedings of the 4th Southeastern Conference on Combinatorics, Graph Theory, and Computing. Online: www.cs.elte.hu/~lovasz/scans/covercolor.pdf.
  45. M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Micali, and P. Rogaway (1988). “Everything provable is provable in zero-knowledge.” In Advances in Cryptology—CRYPTO 1988, pp. 37–56. DOI: 10.1007/0-387-34799-2_4.
  46. O. Goldreich, S. Micali, and A. Wigderson(1991). “Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems.” Journal of the ACM, 38: 3, 690–728. DOI: 10.1145/116825.116852.
  47. A. Chiesa, M. Forbes, T. Gur, and N. Spooner (2018). “Spatial isolation implies zero knowledge even in a quantum world.” In 59th Annual Symposium on Foundations of Computer Science—FOCS 2018, pp. 755–765. DOI: 10.1109/FOCS.2018.00077.
  48. A. Grilo, W. Slofstra, and H. Yuen (2019). “Perfect zero knowledge for quantum multiprover interactive proofs.” In Proceedings of FOCS, pp. 611–635. DOI: 10.1109/FOCS.2019.00044.
  49. T. Vidick and T. Zhang (2020). “Classical zero-knowledge arguments for quantum computations.” Quantum, 4, 266. DOI: 10.22331/q-2020–05-14-266.
  50. F. Ramsey (1930). “On a problem of formal logic.” Proceedings of the London Mathematical Society, 30, 264286. DOI: 10.1112/plms/s2-30.1.264.
  51. S. A. Burr (1990). On the Computational Complexity of Ramsey—Type Problems, pp. 46–52. Springer Berlin Heidelberg, Berlin, Heidelberg. DOI: 10.1007/978-3-642-72905-8_5.
  52. N. Weaver. (2017). “A ‘quantum’ Ramsey theorem for operator systems.” Proceedings of the American Mathematical Society, 145, 4595–4605. DOI: 10.1090/proc/13606.
  53. H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf (2001). “Quantum fingerprinting.” Physical Review Letters, 87, 167902. DOI: 10.1103/PhysRevLett.87.167902.
  54. M. Horodecki, P. W. Shor, and M. B. Ruskai (2003). “Entanglement breaking channels.” Reviews in Mathematical Physics, 15: 6, 629–641. DOI: 10.1142/s0129055x03001709.
  55. J. Watrous (2018). The Theory of Quantum Information, 1st ed. Cambridge University Press.
  56. P. H. Schönemann (1966). “A generalized solution of the orthogonal Procrustes problem.” Psychometrika, 31: 1, 1–10. DOI: 10.1007/BF02289451.
DOI: https://doi.org/10.2478/qic-2025-0026 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 453 - 487
Submitted on: May 7, 2025
|
Accepted on: Aug 27, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Eric Culf, Arthur Mehta, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.