References
- Shor, P. Algorithms for quantum computation: discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science 1994, 124–134. https://doi.org/10.1109/SFCS.1994.365 700
- Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review 1999, 41, 303–332. https://doi.org/10.1137/S0036144598347011
- Rivest, R. L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 1978, 21, 120–126. https://doi.org/10.1145/359340.359342
- Bernstein, D. J.; Lange, T. Post-quantum cryptography. Nature 2017, 549, 188–194. https://doi.org/10.1038/nature23461
- Yunakovsky, S. E.; Kot, M.; Pozhar, N.; Nabokov, D.; Kudinov, M.; Guglya, A.; Kiktenko, E. O.; Kolycheva, E.; Borisov, A.; Fedorov, A. K. Towards security recommendations for public-key infrastructures for production environments in the post-quantum era. EPJ Quantum Technology 2021, 8, 14. https://doi.org/10.1140/epjqt/s4 0507–021-00104-z6.
- Lucero, E.; Barends, R.; Chen, Y.; Kelly, J.; Mariantoni, M.; Megrant, A.; O’Malley, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Yin, Y.; Cleland, A. N.; Martinis, J. M. Computing prime factors with a Josephson phase qubit quantum processor. Nature Physics 2012, 8, 719–723. https://doi.org/10.1038/nphys2385
- Monz, T.; Nigg, D.; Martinez, E. A.; Brandl, M. F.; Schindler, P.; Rines, R.; Wang, S. X.; Chuang, I. L.; Blatt, R. Realization of a scalable Shor algorithm. Science 2016, 351, 1068. https://doi.org/10.1126/science.aad9480
- Lu, C.-Y.; Browne, D. E.; Yang, T.; Pan, J.-W. Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits. Physical Review Letters 2007, 99, 250504. https://doi.org/10.1103/PhysRevLett.99.250504
- Lanyon, B. P.; Weinhold, T. J.; Langford, N. K.; Barbieri, M.; James, D. F. V.; Gilchrist, A.; White, A. G. Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Physical Review Letters 2007, 99, 250505. https://doi.org/10.1103/PhysRevLett.99.250505
- Martín-López, E.; Laing, A.; Lawson, T.; Alvarez, R.; Zhou, X.-Q.; O’Brien, J. L. Experimental realization of Shor’s quantum factoring algorithm using qubit recycling. Nature Photonics 2012, 6, 773. https://doi.org/10.1 038/nphoton.2012.259
- Gidney, C.; Ekera, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 2021, 5, 433. https://doi.org/10.22331/q-2021-04-15-433
- Gidney, C. How to factor 2048 bit RSA integers with less than a million noisy qubits. arXiv preprint 2025, arXiv:2505.15917. https://arxiv.org/abs/2505.15917
- Coppersmith, D. An approximate Fourier transform useful in quantum factoring. arXiv preprint 2002, arXiv:quant-ph/0201067. https://arxiv.org/abs/quant-ph/0201067
- Bocharov, A.; Roetteler, M.; Svore, K. M. Factoring with qutrits: Shor’s algorithm on ternary and metaplectic quantum architectures. Physical Review A 2017, 96, 012306. https://doi.org/10.1103/PhysRevA.96.012306
- Regev, O. An efficient quantum factoring algorithm. arXiv preprint 2024, arXiv:2308.06572. https://arxiv.org/abs/2308.06572
- Anschuetz, E.; Olson, J.; Aspuru-Guzik, A.; Cao, Y. Variational quantum factoring. In Quantum Technology and Optimization Problems, Feld, S.; Linnhoff-Popien, C. (Eds.), Springer International Publishing: Cham, 2019; pp. 74–85.
- Peng, W.; Wang, B.; Hu, F.; Wang, Y.; Fang, X.; Chen, X.; Wang, C. Factoring larger integers with fewer qubits via quantum annealing with optimized parameters. Science China Physics, Mechanics & Astronomy 2019, 62, 60311. https://doi.org/10.1007/s11433-018-9307-1
- Wang, B.; Hu, F.; Yao, H.; Wang, C. Prime factorization algorithm based on parameter optimization of Ising model. Scientific Reports 2020, 10, 7106. https://doi.org/10.1038/s41598-020-62802-5
- Karamlou, A.H.; Simon, W.A.; Katabarwa, A.; Scholten, T.L.; Peropadre, B.; Cao, Y. Analyzing the performance of variational quantum factoring on a superconducting quantum processor. npj Quantum Information 2021, 7, 156. https://doi.org/10.1038/s41534-021-00478-z
- Sobhani, M.; Chai, Y.; Hartung, T.; Jansen, K. Variational quantum eigensolver approach to prime factorization on IBM’s noisy intermediate scale quantum computer. Physical Review A 2025, 111, 042413.
- Yan, B.; Tan, Z.; Wei, S.; Jiang, H.; Wang, W.; Wang, H.; Luo, L.; Duan, Q.; Liu, Y.; Shi, W.; et al. Factoring integers with sublinear resources on a superconducting quantum processor. arXiv 2022, arXiv:2212.12372. https://arxiv.org/abs/2212.12372
- Schnorr, C.P. Fast factoring integers by SVP algorithms, corrected. Cryptology ePrint Archive 2021, Paper 2021/933. https://eprint.iacr.org/2021/933
- Farhi, E.; Goldstone, J.; Gutmann, S. A quantum approximate optimization algorithm. arXiv 2014, arXiv:1411.4028. https://arxiv.org/abs/1411.4028
- Farhi, E.; Harrow, A.W. Quantum supremacy through the quantum approximate optimization algorithm. arXiv 2019, arXiv:1602.07674. https://arxiv.org/abs/1602.07674
- Pagano, G.; Bapat, A.; Becker, P.; Collins, K.S.; De, A.; Hess, P.W.; Kaplan, H.B.; Kyprianidis, A.; Tan, W. L.; Baldwin, C.; et al. Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator. Proceedings of the National Academy of Sciences of the United States of America 2020, 117, 25396. https://doi.org/10.1073/pnas.2006373117
- Harrigan, M. P.; Sung, K. J.; Neeley, M.; Satzinger, K. J.; Arute, F.; Arya, K.; Atalaya, J.; Bardin, J. C.; Barends, R.; Boixo, S.; et al. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nature Physics 2021, 17, 332.https://doi.org/10.1038/s41567-020-01105-y
- Bharti, K.; Cervera-Lierta, A.; Kyaw, TH.; Haug, T; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J.S.; Menke, T.; Mok, W.-K.; Sim, S.; Kwek, L.-C.; Aspuru-Guzik, A. Noisy intermediate-scale quantum algorithms. Reviews of Modern Physics 2022, 94, 015004. https://doi.org/10.1103/RevModPhys.94.0 15004
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; Coles, PJ. Variational quantum algorithms. Nature Reviews Physics 2021, 3, 625. https://doi.org/10.1038/s42254-021-00348-9
- Grebnev, S.V.; Gavreev, M.A.; Kiktenko, E.O.; Guglya, A.P.; Efimov, A.R.; Fedorov, A.K. Pitfalls of the sublinear QAOA-based factorization algorithm. IEEE Access 2023, 11, 134760. https://doi.org/10.1109/ACCESS. 2023.3336989
- Khattar, T.; Yosri, N. A comment on ‘‘Factoring integers with sublinear resources on a superconducting quantum processor”. arXiv 2023, arXiv:2307.09651.
- Hegade, N.N.; Solano, E. Digitized-counterdiabatic quantum factorization. arXiv 2023, arXiv:2301.11005.
- Chernyavskiy, A.; Bantysh, B. A method to compute QAOA fixed angles. Russian Microelectronics 2023, 52, S352-S356.
- Brandao, F.G.; Broughton, M.; Farhi, E.; Gutmann, S.; Neven, H. For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances. arXiv 2018, arXiv:1812.04170.
- Yan, S. Y. Cryptanalytic attacks on RSA. Springer New York, NY 2008. https://doi.org/10.1007/978-0-387-48 742-7
- Babai, L. On Lovász’s lattice reduction and the nearest lattice point problem. Combinatorica 1986, 6, 1-13.
- Lenstra, A. K.; Lenstra, H. W.; Lovász, L. Factoring polynomials with rational coefficients. Mathematische Annalen 1982, 261, 515–534.
- Guerreschi, G. G.; Matsuura, A. Y. QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Scientific Reports 2019, 9, 6903.
- Zhou, L.; Wang, S.-T.; Choi, S.; Pichler, H.; Lukin, M. D. Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices. Physical Review X 2020, 10, 021067.
- Fernández-Pendás, M.; Combarro, E.F.; Vallecorsa, S.; Ranilla, J.; Rúa, I.F. A study of the performance of classical minimizers in the quantum approximate optimization algorithm. Journal of Computational and Applied Mathematics 2022, 404, 113388.
- Galda, A.; Liu, X.; Lykov, D.; Alexeev, Y.; Safro, I. Transferability of optimal QAOA parameters between random graphs. In Proceedings IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE: 2021; pp. 171–180.
- Wurtz, J.; Lykov, D. The fixed angle conjecture for QAOA on regular MaxCut graphs. arXiv 2021, arXiv:2107.00677.
- Chernyavskiy, A.Y. Calculation of quantum discord and entanglement measures using the random mutations optimization algorithm. arXiv 2013, arXiv:1304.3703.
- Bantysh, B.; Bogdanov, Y.I. Quantum tomography of noisy ion-based qudits. Laser Physics Letters 2020, 18, 015203.
- Zalivako, I.V.; Nikolaeva, A.S.; Borisenko, A.S.; Korolkov, A.E.; Sidorov, P.L.; Galstyan, K.P.; Semenin, N.V.; Smirnov, V.N.; Aksenov, M.A.; Makushin, K.M.; Kiktenko, E.O.; Fedorov, A.K.; Semerikov, I.A.; Khabarova, K. Y.; Kolachevsky, N.N. Towards a multiqudit quantum processor based on a 171Yb+ ion string: Realizing basic quantum algorithms. Quantum Reports 2025, 7, 19. https://doi.org/10.3390/quantum7020019
- McKay, D.C.; Wood, C.J.; Sheldon, S.; Chow, J.M.; Gambetta, J.M.; Efficient Z gates for quantum computing. Physical Review A 2017, 96, 022330.
- Schmidt-Kaler, F.; Häffner, H.; Riebe, M.; Gulde, S.; Lancaster, G.P.T.; Deuschle, T.; Becher, C.; Roos, C.F.; Eschner, J.; Blatt, R. Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 2003, 422, 408. https://doi.org/10.1038/nature01494
- Mølmer, K.; Sørensen, A. Multiparticle entanglement of hot trapped ions. Physical Review Letters 1999, 82, 1835. https://doi.org/10.1103/PhysRevLett.82.1835
- Sørensen, A.; Mølmer, K. Quantum computation with ions in thermal motion. Physical Review Letters 1999, 82, 1971. https://doi.org/10.1103/PhysRevLett.82.1971
- Sørensen, A.; Mølmer, K. Entanglement and quantum computation with ions in thermal motion. Physical Review A 2000, 62, 022311. https://doi.org/10.1103/PhysRevA.62.022311
- Choi, T.; Debnath, S.; Manning, T.; Figgatt, C.; Gong, Z.X.; Duan, L.M.; Monroe, C. Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. Physical Review Letters 2014, 112, 190502.
- Semenin, N.V.; Borisenko, A.S.; Zalivako, I.V.; Semerikov, I.A.; Khabarova, K.Y.; Kolachevsky, N.N. Optimization of the readout fidelity of the quantum state of an optical qubit in the 171 Yb+ ion. JETP Letters 2021, 114, 486.
- Magesan, E.; Gambetta, J.M.; Emerson, J. Characterizing quantum gates via randomized benchmarking. Physical Review A 2012, 85, 042311.
- Benhelm, J.; Kirchmair, G.; Roos, C.F.; Blatt, R. Towards fault-tolerant quantum computing with trapped ions. Nature Physics 2008, 4, 463–466. https://doi.org/10.1038/nphys961
- Brown, K.R.; Harrow, A.W.; Chuang, I.L. Arbitrarily accurate composite pulse sequences. Physical Review A 2004, 70, 052318.
- Zalivako, I.V.; Semenin, N.V.; Zhadnov, N.O.; Galstyan, K.P.; Kamenskikh, P.A.; Smirnov, V.N.; Evgenyevich, K. A.; Leonidovich, S.P.; Borisenko, A.S.; Anosov, Y.P. Quantum computing with trapped ions: principles, achievements, and prospects. Physics-Uspekhi 2025, 68.
- Aboumrad, W.; Widdows, D.; Kaushik, A. Quantum and classical combinatorial optimizations applied to latticebased factorization. arXiv 2023, arXiv:2308.07804.
- Luan, L.; Gu, C.; Zheng, Y.; Shi, Y. Lattice enumeration with discrete pruning: Improvements, cost estimation and optimal parameters. Mathematics 2023, 11, 766.
- Shaydulin, R.; Li, C.; Chakrabarti, S.; DeCross, M.; Herman, D.; Kumar, N.; Larson, J.; Lykov, D.; Minssen, P.; Sun, Y.; et al. Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem. Science Advances 2024, 10, eadm6761.
- Priestley, B.; Wallden, P. A practically scalable approach to the closest vector problem for sieving via QAOA with fixed angles. arXiv 2025, arXiv:2503.08403. https://arxiv.org/abs/2503.08403