Have a personal or library account? Click to login
Matrix Encoding Method in Variational Quantum Singular Value Decomposition Cover

Matrix Encoding Method in Variational Quantum Singular Value Decomposition

Open Access
|Aug 2025

References

  1. D. Coppersmith (2002). An Approximate Fourier Transform Useful in Quantum Factoring, IBM Research Report, RC 19642. https://api.semanticscholar.org/CorpusID:17450629.
  2. Y.S. Weinstein, M.A. Pravia, E.M. Fortunato, S. Lloyd and D.G. Cory (2001). “Implementation of the quantum fourier transform”. Physical Review Letters, 86, 1889. https://doi.org/10.1103/PhysRevLett.86.1889.
  3. M.A. Nielsen and I.L. Chuang (2000). Quantum Computation and Quantum Information, Cambridge, England: Cambridge University Press.
  4. H. Wang, L. Wu, Y. Liu and F. Nori (2010). “Measurement-based quantum phase estimation algorithm for finding eigenvalues of non-unitary matrices”. Physical Review A, 82, 062303. https://doi.org/10.1103/PhysRevA.82.062303
  5. H.F. Trotter (1959). “On the product of semi-groups of operators.” Proceedings of the American Mathematical Society, 10, 545.
  6. M. Suzuki (1976). “Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems”. Communications in Mathematics Physics, 51, 183.
  7. A. T.-Shma (2013). Inverting Well Conditioned Matrices in Quantum Logspace, in Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pp. 881–890, New York.
  8. D. Aharonov and A. T.-Shma (2007). “Adiabatic Quantum State Generation”. SIAM Journal on Computing, 37: 1, 47. https://doi.org/10.1137/060648829.
  9. S. Blanes and F. Casas (2004). “On the convergence and optimization of the Baker-Campbell-Hausdorff formula”. Linear Algebra and its Applications, 378, 135.
  10. L. Zhao, Z. Zhao, P. Rebentrost and J. Fitzsimons (2021). “Compiling basic linear algebra subroutines for quantum computers”. Quantum Machine Intelligence, 3, 21.
  11. W. Qi, A.I. Zenchuk, A. Kumar and J. Wu (2024). “Quantum algorithms for matrix operations and linear systems of equations”. Communications in Theoretical Physics, 76, 035103. https://doi.org/10.1088/1572-9494/ad2366
  12. A.I. Zenchuk, W. Qi, A. Kumar and J. Wu (2024). “Matrix manipulations via unitary transformations and ancilla-state measurements”. Quantum Information & Computing, 24: 13,14, 1099–1109. https://www.rintonpress.com/xxqic24/qic-24-1314/1099-1109.pdf
  13. A.I. Zenchuk, G.A. Bochkin, W. Qi, A. Kumar and J. Wu (2025). “Quantum algorithms for calculating determinant and inverse of matrix and solving linear algebraic systems”. Quantum Information & Computing, 25: 2, 195–215. https://doi.org/10.2478/qic-2025-0010.pdf
  14. A.W. Harrow, A. Hassidim and S. Lloyd (2009), “Quantum algorithm for linear systems of equations”. Physical Reviews Letters, 103, 150502. https://doi.org/10.1103/PhysRevLett.103.150502
  15. B.D. Clader, B.C. Jacobs and C.R. Sprouse (2013). “Preconditioned quantum linear system algorithm”. Physical Review Letters, 110, 250504. https://doi.org/10.1103/PhysRevLett.110.250504
  16. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe and S. Lloyd (2017). “Quantum machine learning”. Nature. 549, 195. https://doi.org/10.1038/nature23474
  17. L. Wossnig, Z. Zhao and A. Prakash (2018). “Quantum linear system algorithm for dense matrices”. Physical Reviews Letters, 120, 050502. https://doi.org/10.1103/PhysRevLett.120.050502
  18. X. D. Cai, C. Weedbrook, Z.E. Su, M.C. Chen, M. Gu, M.J. Zhu, L. Li, N.L. Liu, C.Y. Lu and J.W. Pan (2013). “Experimental quantum computing to solve systems of linear equations”. Physical Reviews Letters, 110, 230501. https://doi.org/10.1103/PhysRevLett.110.230501
  19. J.W. Pan, Y. Cao, X. Yao, Z. Li, C. Ju, H. Chen, X. Peng, S. Kais and J. Du (2014). “Experimental realization of quantum algorithm for solving linear systems of equations”. Physical Reviews A, 89, 022313. https://doi.org/10.1103/PhysRevA.89.022313
  20. S. Barz, I. Kassal, M. Ringbauer, Y.O. Lipp, B. Dakic, A. Aspuru-Guzik and P. Walther (2014). “A two-qubit photonic quantum processor and its application to solving systems of linear equations”. Scientific Reports, 4, 6115. https://doi.org/10.1038/srep06115
  21. Y. Zheng, C. Song, M.C. Chen, B. Xia, W. Liu, Q. Guo, L. Zhang, D. Xu, H. Deng, K. Huang, Y. Wu, Z. Yan, D. Zheng, L. Lu, J.W. Pan, H. Wang, C.Y. Lu and X. Zhu (2017). “Solving systems of linear equations with a superconducting quantum processor”. Physical Reviews Letters, 118, 210504. https://doi.org/10.1103/PhysRevLett.118.210504
  22. J.M. Martyn, Z.M. Rossi, A.K. Tan, and I.L. Chuang (2021). “A grand unification of quantum algorithms”. PRX Quantum, 2, 040203.
  23. I. Novikau and I. Joseph (2024). ‘Estimating QSVT angles for matrix inversion with large condition numbers”. arXiv, 2408.15453v2 [quant-ph].
  24. A. Gilyén, Y. Su, G.H. Low and N. Wiebe (2019). Quantum Singular Value Transformation and beyond: exponential improvements for quantum matrix arithmetics, STOC 2019: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 193–204. https://doi.org/10.1145/3313276.3316366
  25. C. Bravo-Prieto, D. García-Martín and J.I. Latorre (2020). “Quantum singular value decomposer”. Physical Review A, 101, 062310.
  26. X. Wang, Zh. Song and Y. Wang (2021). “Variational quantum singular value decomposition”. Quantum, 5, 483.
  27. J. Jojo, A. Khandelwal, M.G. Chandra (2024). “On modifying the variational quantum singular value decomposition algorithm”. arXiv:2310.19504v2 [quant-ph].
  28. Paddle Quantum: a quantum machine learning toolkit (2020). Available at: https://qml.baidu.com (Accessed on 12 June 2025).
  29. PaddlePaddle. Available at: https://github.com/paddlepaddle/paddle (Accessed on 12 June 2025).
  30. Ya. Ma, D. Yu, T. Wu and H. Wang (2019). PaddlePaddle: An open-source deep learning platform from industrial practice. Frontiers of Data and Domputing, 11: 1, 105.
  31. I. Kerenidis and A. Prakash (2016). “Quantum recommendation systems”. arXiv:1603.08675.
  32. P. Rebentrost, A. Steffens, I. Marvian and S. Lloyd (2018). “Quantum singular-value decomposition of nonsparse low-rank matrices”. Physical Review A, 97: 1, 012327.
  33. A. Bellante, A. Luongo, and S. Zanero. (2022). “Quantum algorithms for SVD-based data representation and analysis”. Quantum Machine Intelligence, 4: 2.
  34. I. Kerenidis, A. Prakash (2020). “Quantum gradient descent for linear systems and least squares”. Physical Review A, 101: 2, 022316.
  35. L. Wossnig, Zh. Zhao, and A. Prakash (2018). “Quantum linear system algorithm for dense matrices”. Physical Review Letters, 120: 5, 050502.
  36. Sh. Zheng, Ch. Ding and F. Nie (2018). “Regularized singular value decomposition and application to recommender system”. arXiv:1804.05090v1 [cs.LG].
  37. P. Bhavana, V. Kumar and V. Padmanabhan (2019). “Block based Singular Value Decomposition approach to matrix factorization for recommender systems”. arXiv:1907.07410v1 [cs.LG].
  38. E.B. Fel’dman, A.I. Zenchuk, W. Qi and J. Wu (2025). “Remarks on controlled measurement and quantum algorithm for calculating Hermitian conjugate”. arXiv:2501.16028v1.
  39. A.Y. Kitaev, A.H. Shen and M.N. Vyalyi (2002). Classical and Quantum Computation, Graduate Studies in Mathematics, V.47, Rhode Island: American Mathematical Society, Providence.
DOI: https://doi.org/10.2478/qic-2025-0020 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 356 - 368
Submitted on: Apr 14, 2025
Accepted on: Jul 1, 2025
Published on: Aug 22, 2025
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Alexander I. Zenchuk, Wentao Qi, Junde Wu, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.