References
- D. Coppersmith (2002). An Approximate Fourier Transform Useful in Quantum Factoring, IBM Research Report, RC 19642. https://api.semanticscholar.org/CorpusID:17450629.
- Y.S. Weinstein, M.A. Pravia, E.M. Fortunato, S. Lloyd and D.G. Cory (2001). “Implementation of the quantum fourier transform”. Physical Review Letters, 86, 1889. https://doi.org/10.1103/PhysRevLett.86.1889.
- M.A. Nielsen and I.L. Chuang (2000). Quantum Computation and Quantum Information, Cambridge, England: Cambridge University Press.
- H. Wang, L. Wu, Y. Liu and F. Nori (2010). “Measurement-based quantum phase estimation algorithm for finding eigenvalues of non-unitary matrices”. Physical Review A, 82, 062303. https://doi.org/10.1103/PhysRevA.82.062303
- H.F. Trotter (1959). “On the product of semi-groups of operators.” Proceedings of the American Mathematical Society, 10, 545.
- M. Suzuki (1976). “Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems”. Communications in Mathematics Physics, 51, 183.
- A. T.-Shma (2013). Inverting Well Conditioned Matrices in Quantum Logspace, in Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pp. 881–890, New York.
- D. Aharonov and A. T.-Shma (2007). “Adiabatic Quantum State Generation”. SIAM Journal on Computing, 37: 1, 47. https://doi.org/10.1137/060648829.
- S. Blanes and F. Casas (2004). “On the convergence and optimization of the Baker-Campbell-Hausdorff formula”. Linear Algebra and its Applications, 378, 135.
- L. Zhao, Z. Zhao, P. Rebentrost and J. Fitzsimons (2021). “Compiling basic linear algebra subroutines for quantum computers”. Quantum Machine Intelligence, 3, 21.
- W. Qi, A.I. Zenchuk, A. Kumar and J. Wu (2024). “Quantum algorithms for matrix operations and linear systems of equations”. Communications in Theoretical Physics, 76, 035103. https://doi.org/10.1088/1572-9494/ad2366
- A.I. Zenchuk, W. Qi, A. Kumar and J. Wu (2024). “Matrix manipulations via unitary transformations and ancilla-state measurements”. Quantum Information & Computing, 24: 13,14, 1099–1109. https://www.rintonpress.com/xxqic24/qic-24-1314/1099-1109.pdf
- A.I. Zenchuk, G.A. Bochkin, W. Qi, A. Kumar and J. Wu (2025). “Quantum algorithms for calculating determinant and inverse of matrix and solving linear algebraic systems”. Quantum Information & Computing, 25: 2, 195–215. https://doi.org/10.2478/qic-2025-0010.pdf
- A.W. Harrow, A. Hassidim and S. Lloyd (2009), “Quantum algorithm for linear systems of equations”. Physical Reviews Letters, 103, 150502. https://doi.org/10.1103/PhysRevLett.103.150502
- B.D. Clader, B.C. Jacobs and C.R. Sprouse (2013). “Preconditioned quantum linear system algorithm”. Physical Review Letters, 110, 250504. https://doi.org/10.1103/PhysRevLett.110.250504
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe and S. Lloyd (2017). “Quantum machine learning”. Nature. 549, 195. https://doi.org/10.1038/nature23474
- L. Wossnig, Z. Zhao and A. Prakash (2018). “Quantum linear system algorithm for dense matrices”. Physical Reviews Letters, 120, 050502. https://doi.org/10.1103/PhysRevLett.120.050502
- X. D. Cai, C. Weedbrook, Z.E. Su, M.C. Chen, M. Gu, M.J. Zhu, L. Li, N.L. Liu, C.Y. Lu and J.W. Pan (2013). “Experimental quantum computing to solve systems of linear equations”. Physical Reviews Letters, 110, 230501. https://doi.org/10.1103/PhysRevLett.110.230501
- J.W. Pan, Y. Cao, X. Yao, Z. Li, C. Ju, H. Chen, X. Peng, S. Kais and J. Du (2014). “Experimental realization of quantum algorithm for solving linear systems of equations”. Physical Reviews A, 89, 022313. https://doi.org/10.1103/PhysRevA.89.022313
- S. Barz, I. Kassal, M. Ringbauer, Y.O. Lipp, B. Dakic, A. Aspuru-Guzik and P. Walther (2014). “A two-qubit photonic quantum processor and its application to solving systems of linear equations”. Scientific Reports, 4, 6115. https://doi.org/10.1038/srep06115
- Y. Zheng, C. Song, M.C. Chen, B. Xia, W. Liu, Q. Guo, L. Zhang, D. Xu, H. Deng, K. Huang, Y. Wu, Z. Yan, D. Zheng, L. Lu, J.W. Pan, H. Wang, C.Y. Lu and X. Zhu (2017). “Solving systems of linear equations with a superconducting quantum processor”. Physical Reviews Letters, 118, 210504. https://doi.org/10.1103/PhysRevLett.118.210504
- J.M. Martyn, Z.M. Rossi, A.K. Tan, and I.L. Chuang (2021). “A grand unification of quantum algorithms”. PRX Quantum, 2, 040203.
- I. Novikau and I. Joseph (2024). ‘Estimating QSVT angles for matrix inversion with large condition numbers”. arXiv, 2408.15453v2 [quant-ph].
- A. Gilyén, Y. Su, G.H. Low and N. Wiebe (2019). Quantum Singular Value Transformation and beyond: exponential improvements for quantum matrix arithmetics, STOC 2019: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 193–204. https://doi.org/10.1145/3313276.3316366
- C. Bravo-Prieto, D. García-Martín and J.I. Latorre (2020). “Quantum singular value decomposer”. Physical Review A, 101, 062310.
- X. Wang, Zh. Song and Y. Wang (2021). “Variational quantum singular value decomposition”. Quantum, 5, 483.
- J. Jojo, A. Khandelwal, M.G. Chandra (2024). “On modifying the variational quantum singular value decomposition algorithm”. arXiv:2310.19504v2 [quant-ph].
- Paddle Quantum: a quantum machine learning toolkit (2020). Available at: https://qml.baidu.com (Accessed on 12 June 2025).
- PaddlePaddle. Available at: https://github.com/paddlepaddle/paddle (Accessed on 12 June 2025).
- Ya. Ma, D. Yu, T. Wu and H. Wang (2019). PaddlePaddle: An open-source deep learning platform from industrial practice. Frontiers of Data and Domputing, 11: 1, 105.
- I. Kerenidis and A. Prakash (2016). “Quantum recommendation systems”. arXiv:1603.08675.
- P. Rebentrost, A. Steffens, I. Marvian and S. Lloyd (2018). “Quantum singular-value decomposition of nonsparse low-rank matrices”. Physical Review A, 97: 1, 012327.
- A. Bellante, A. Luongo, and S. Zanero. (2022). “Quantum algorithms for SVD-based data representation and analysis”. Quantum Machine Intelligence, 4: 2.
- I. Kerenidis, A. Prakash (2020). “Quantum gradient descent for linear systems and least squares”. Physical Review A, 101: 2, 022316.
- L. Wossnig, Zh. Zhao, and A. Prakash (2018). “Quantum linear system algorithm for dense matrices”. Physical Review Letters, 120: 5, 050502.
- Sh. Zheng, Ch. Ding and F. Nie (2018). “Regularized singular value decomposition and application to recommender system”. arXiv:1804.05090v1 [cs.LG].
- P. Bhavana, V. Kumar and V. Padmanabhan (2019). “Block based Singular Value Decomposition approach to matrix factorization for recommender systems”. arXiv:1907.07410v1 [cs.LG].
- E.B. Fel’dman, A.I. Zenchuk, W. Qi and J. Wu (2025). “Remarks on controlled measurement and quantum algorithm for calculating Hermitian conjugate”. arXiv:2501.16028v1.
- A.Y. Kitaev, A.H. Shen and M.N. Vyalyi (2002). Classical and Quantum Computation, Graduate Studies in Mathematics, V.47, Rhode Island: American Mathematical Society, Providence.