Have a personal or library account? Click to login
Assessment of Bioactive Compounds in Red Wines Available for Purchase in Latvia Cover
Open Access
|Mar 2022

References

  1. Ayvaz, H., Diaconeasa, Z., Leopold, L., Rugina, D., Socaciu, C. (2015). Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int. J. Mol. Sci., 16 (2), 2352–2365.
  2. Bodnieks, E., Neimane, L., Zariņš, Z. (2015). Uztura mācība [Nutrition Science]. LU Akadēmiskais Apgāds, Rīga. 432 lpp. (in Latvian).
  3. Bonello, F., Cassino, C., Cravero, M. C., Gianotti, V., Osella, D., Tsolakis, C. (2016). Antioxidant composition of a selection of Italian red wines and their corresponding free-radical scavenging activity. J. Chem., 2016 (3), 1–8.
  4. Čakar, U. D., Dordevic, B. I., Milovanovic, M. M., Petrovic, A. V., Vajs, V. E., Zevarik, J., Zivkovic, M. B. (2016). Phenolic profile of some fruit wines and their antioxidant properties. Hem. Ind., 70 (6), 661–672.<a href="https://doi.org/10.2298/HEMIND150722002C" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2298/HEMIND150722002C</a>
  5. Carluccio, M. A., Giovinazzo, G., Grieco, F. (2019). Autochthonous Saccharomyces cerevisiae starter cultures enhance polyphenols content, antioxidant activity, and anti-inflammatory response of Apulian red wines. Foods, 8 (453), 1–14.
  6. Carranza-Concha, J., Carranza-Tellez, J., Contreras-Martinez, C. S., Franco-Banuelus, A. (2017). Total phenolic content and antioxidant capacity of wine grapes grown in Zacatecas, Mexico. Agrociencia, 51 (6), 661–671.
  7. Chamizo-Gonzalez, F., Gonzalez-Miret, L. M., Gordillio, B., Heredia, J. F. (2020). Impact of alternative protein fining agents on the phenolic composition and color of Shyrah red wines from warm climate. Food Chem., 342 (2), 128297.
  8. Chankvetadze, B., Chankvetadze, L., Ebelashvili, N., Japaridze, M., Kekelidze, I., (2018). Phenolic antioxidants in red dessert wine produced with innovative technology. Ann. of Agrar. Sci., 16 (1), 34–38.
  9. Chun, O. K., Kim, D. O., Kim, Y. J., Lee, C. Y., Moon, H. Y. (2003). Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem., 51 (22), 6509–6515.
  10. Corder, R., Dhariwal, S. K., Husain, F., Kang, S. S., Khan, N. Q., Patel, B., Pothecary, M. R., Wood, E. G. (2015). Regulation of vascular endothelial function by red wine procyanidins: implications for cardiovascular health. Tetrahedron, 71 (20), 3059–3065.
  11. Cortez, R. E., Gonzalez de Mejia, E. (2019). Black currants (Ribes nigrum): A review on chemistry, processing, and health benefits. J. Food Sci., 84 (9), 2387–2401.<a href="https://doi.org/10.1111/1750-3841.14781" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/1750-3841.14781</a>
  12. Curko, N., Gaurina, Srček, V., Ljevar, A., Kovačevic Ganic, K., Radoševic, K., Tomaševic, M. (2016). Phenolic composition, antioxidant capacity and in vitro cytotoxicity assessment of fruit wines. Food Technol. Biotechnol., 54 (2), 145–155.
  13. Czarnecki, Z., Gumienna, M., Lasik, M. (2011). Bioconversion of grape and chokeberry wine polyphenols during simulated gastrointestinal in vitro digestion. J. Food Sci. Nutr., 62 (3), 226–233.
  14. De Beer, D., Gelderblom, W. C., Joubert, E., Manley, M. (2003). Antioxidant activity of South African red and white cultivar wines: Free radical scavenging. J. Agric. Food Chem., 51 (4), 902–909.<a href="https://doi.org/10.1021/jf026011o" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/jf026011o</a>
  15. Ekholm, A., Flick, G., Paschke, M., Rajeev, Vagiri, M., Rumpunen, K. (2013). Blackcurrant wine and vinegar: Effects of processing methods on content of beneficial polyphenols — a pilot study. Swedish University of Agricultural Sciences. http://archive.northsearegion.eu/files/repository/20140106104028_2013-SE-Enclosure11.pdf (accessed 15.12.2021).
  16. Escudero-Gilete, M. L., Heredia, F. J., Hernanz, D., Jara-Palacios, M. J. (2016). The use of grape seed byproducts rich in flavonoids to improve the antioxidant potential of red wines. Molecules, 21 (11), 1–12.
  17. Faccia, M., Gambacorta, G., Punzi, R., Trani, A., Verrastro, V. (2016). Phenols, volatiles and sensory properties of primitivo wines from the “Gioia Del Colle” PDO area. S. Afr. J. Enol., 37 (2), 139–148.
  18. Garavaglia, J., Marcadenti, A., Markoski, M. M., Olivaes, J., Oliveira, A. (2016). Molecular properties of red wine compounds and cardiometabolic benefits. Nutr. Metab. Insights, 9, 51–57.
  19. Giri, B., Pandeya, A., Pokhrel, P., Rayamajhi, S. (2018). Evaluation of secondary metabolites, antioxidant activity and color parameters of Nepali wines. Nutr. Food Sci., 6 (8), 2252–2263.
  20. Haley, S., Harris, M., Perret, J., Wilson, J., Ju, L. (2003). Antioxidant properties of bran extracts from “Akron” wheat grown at different locations. J. Agric. Food Chem., 51 (6), 1566–1570.
  21. Jakobek, L., Medvidovic-Kosanovic, M., Novak, Jovanovic, I., Šeruga, M. (2007). Antioxidant activity and polyphenols of aronia in comparison to other berry species. Agric. Conspec. Sci, 72 (4), 301–306.
  22. Jiang, B., Zhang, Z. W. (2012). Comparison of phenolic compounds and antioxidant properties of cabernet sauvignon and merlot wines from four wine grape-growing regions in China. Molecules, 17 (8), 8804–8821.<a href="https://doi.org/10.3390/molecules17088804" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/molecules17088804</a>
  23. Jurčevic, I. L., Krbavčic, I. P., Markovic, K., Tolic, M. T., Vahčic, N. (2015). Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technol. Biotechnol, 53 (2), 171–179.
  24. Kostic, D. A., Micic, R. J., Mitic, M. N., Naskovic, D. Č., Obradovic, M. V. (2011). Phenolics content and antioxidant capacity of commercial red fruit juices. Hem. Ind., 65 (5), 611–619.
  25. Lamuela-Raventos, R. M., Orthofer, R., Singleton, V. R. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol, 299, 152–178.<a href="https://doi.org/10.1016/S0076-6879(99)99017-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0076-6879(99)99017-1</a>
  26. Legzdina, Z., Straumite, E. (2020). Wine buying habits of Latvian consumers. In: 15th International Scientific Conference “Students on Their Way to Science” (Undergraduate, Graduate, Post-graduate Students, Jelgava, Latvia, 24 April 2020: Collection of Abstracts, 46. https://llufb.llu.lv/conference/Students_their_Way_Science/Latvia_SWS_15th_Collection_of_Abstracts_2020.pdf (accessed 10.01.2022)..
  27. Pannala, A., Pellegrini, N., Proteggente, A., Re, R., Rice-Evans, C., Yang, M. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol. Med., 26 (9–10), 1231–1237.
  28. Punbusayakul, N. (2018). Bioactive compounds and antioxidant activity of wines from different currant cultivars. J. Process. Energy Agricult., 22 (1), 27–30.<a href="https://doi.org/10.5937/JPEA1801027P" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5937/JPEA1801027P</a>
  29. Sidor, A., Gramza-Michalowska, A. (2019). Black chokeberry Aronia Melanocarpa L.: Aqualitative composition, phenolic profile and antioxidant potential. Molecules, 24 (20), 3710.
DOI: https://doi.org/10.2478/prolas-2022-0020 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 131 - 137
Submitted on: Mar 22, 2021
Accepted on: Nov 17, 2021
Published on: Mar 3, 2022
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2022 Zane Legzdiņa, Evita Straumīte, Zanda Krūma, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.