References
- Ajdanian, L., Aroiee, H., Azizi, M., Babaei, M., (2020). Changes in biochemical properties of tomato (cv. 240) affected by combination of blue/red optical spectra and Calfomyth spray (Ca and P). Int. J. Agric. Biol. Eng., 13 (5), 79–84.
- Alenazia, M. M., Shafiga, M., Alsadona, A. A., Alhelalc, I. M., Alhamdancb, A. M., Soleimana, T. H. I., Ibrahima, A. A., Shady, M. R., Al-Selweyaa, W. A. (2020). Improves functional and nutritional properties of tomato fruits during cold storage. Saudi J. Biol. Sci., 27, 1467–1474.10.1016/j.sjbs.2020.03.026725404132489282
- Anton, D., Bender, I., Kaart, T., Roasto, M., Heinonen, M., Luik, A., Püssa, T. (2017). Changes in polyphenols contents and antioxidant capacities of organically andconventionally cultivated tomato (Solanum lycopersicum L.) fruits duringripening. Int. J. Analyt. Chem., 2017, 2367453.
- Antonious, G., Turley, E., Dawood, M. (2019). Ascorbic acid, sugars, phenols, and nitrates concentrations in tomato grown in animal manure amended soil. Agriculture (Switzerland), 9 (5), 94.10.3390/agriculture9050094
- Asensio, E., Sanvicente, I., Mallor, C., Menal-Puey, S. (2019). Spanish traditional tomato. Effects of genotype, location and agronomic conditions on the nutritional quality and evaluation of consumer preferences. Food Chem., 270, 452–458.10.1016/j.foodchem.2018.07.13130174071
- Barickman, T. C., Kopsell, D. A., Sams, C. E. (2017). Abscisic acid improves tomato fruit quality by increasing soluble sugar concentrations. J. Plant Nutr., 40 (7), 964–973.10.1080/01904167.2016.1231812
- Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol., 63 (1), 129–140.10.1016/j.postharvbio.2011.05.016
- Bojarska, J. E., Pilat, B., Majewsks, K. M., Sobiechowska, D. A., Narwojsz, A. (2020). Selected physical parameters and chemical compunds of different types of tomatos. Czech J. Food Sci., 38 (1), 28–35.10.17221/232/2019-CJFS
- Burton-Freeman, B., Reimers, K. (2011). Tomato consumption and health: Emerging benefits. Amer. J. Lifestyle Med., 5 (2), 182–191.10.1177/1559827610387488
- Carli, P., Barone, A., Fogliano, V., Frusciante, L., Ercolano, M. R. (2011). Dissection of genetic and environmental factors involved in tomato organoleptic quality. BMC Plant Biol., 11, 58.10.1186/1471-2229-11-58308029421453463
- Cortés-Olmos, C., Leiva-Brondo, M., Roselló, J., Raigónc, M. D., Cebolla-Cornejo, J. (2014). The role of traditional varieties of tomato as sources of functional compounds. J. Sci. Food Agric., 94 (14), 2888–2904.10.1002/jsfa.662924578266
- Coyago Cruz, E., Corell, M., Moriana, A., Brahm, P. M., Hernanz, D., Stinco, C. M., Beltrán-Sinchiguano, E., Meléndez-Martínez, A. J. (2019). Study of commercial quality parameters, sugars, phenolics, carotenoids and plastids in different tomato varieties. Food Chem., 277, 480–489
- Coyago-Cruz, E., Corell, M., Moriana, A., Hernanz, D., Stinco, C.M., Meléndez-Martķnez, A. J. (2017). Effect of the fruit position on the cluster on fruit quality,carotenoids, phenolics and sugars in cherry tomatoes (Solanum lycopersicum L.). Food Res. Int., 100, 804–813.10.1016/j.foodres.2017.08.00228873753
- Dūma, M., Alsiņa, I., Dubova, L., Erdberga, I. (2018). Bioactive compounds in tomatoes at different stages of maturity. Proc. Latvian Acad. Sci., Section B, 72 (2), 85–90.10.2478/prolas-2018-0014
- Flores, P., Sánchez, E., Fenoll, J., Hellķn, P. (2017). Genotypic variability of carotenoidsin traditional tomato cultivars. Food Res. Int., 100, 510–516.10.1016/j.foodres.2016.07.01428964375
- Garande, V. K., Patil, R. S. (2014). Orange fruited tomato cultivars: Rich source of beta carotene. J. Hortic., 1, 1–5.
- Garcia, D., Narváez-Vásquez, J., Orozco-Cárdenas, M. L. (2017). Tomato (Solanum lycopersicum). In: Safety Assessment of Transgenic Organisms in the Environment, Volume 7: OECD Consensus Documents. OECD Publishing, Paris, pp. 69–104.
- Gorecka, D., Wawrzyniak. A., Jedrusek-Golinska, A., Dziedzic, K., Hamulka, J., Kowalczewski, P. L., Walkowiak, J. (2020). Lycopene in tomatoes and tomato products. Open Chem., 18, 752–756.10.1515/chem-2020-0050
- Hasan, T., Sultana, M. (2017). Lycopene and cardiovascular diseases: A review of the literature. Int. J. Res. Rev., 4 (1), 73–86.
- Helyes, L., Pék, Z., Lugasi, A. (2008). Function of the variety technological traits and growing conditions on fruit components of tomato (Lycopersicon lycopersicum L. Karsten). Acta Aliment., 37 (4), 427–436.10.1556/AAlim.2008.0010
- Iglesias, M. J., García-López, J., Collados-Luján, J. F., López-Ortiz, F., Díaz, M., Toresano, F., Camacho, F. (2015). Differential response to environmental and nutritional factors of high-quality tomato varieties. Food Chem., 176, 278–287.10.1016/j.foodchem.2014.12.04325624234
- Kacjan Maršić, N., Gašperlin, L., Abram, V., Budić, M., Vidrih, R. (2011). Quality parameters and total phenolic content in tomato fruits regarding cultivar and microclimatic conditions. Turk. J. Agric. For., 35(2), 185–194.
- Kelkel, M., Schumacher, M., Dicato, M., Diederich, M. (2011). Antioxidant and anti-proliferative properties of lycopene. Free Radic. Res.,45 (8), 925–940.10.3109/10715762.2011.56416821615277
- Kondratieva, I. Y., Golubkina, N. A. (2016). Lycopene and ß-carotene of tomato. Vegetable crops of Russia [Кондратьева И. Ю., Голубкина Н. А. Ликопин и ß-каротин томатоa. Овощu России], 33 (4), 80–83.
- Kotíková, Z., Lachman, J., Hejtmánková, A., Hejtmánková, K. (2011). Determination of antioxidant activity and antioxidant content in tomato varieties and evaluation of mutual interactions between antioxidants. LWT -Food Sci. Technol., 44 (8), 1703–1710.10.1016/j.lwt.2011.03.015
- Leopold, J. A. (2015). Antioxidants and coronary artery disease: From pathophysiology to preventive therapy. Coron. Artery Dis., 26 (2), 176–183.10.1097/MCA.0000000000000187431573725369999
- Li, Y., Wang, H., Zhang, Y., Martin, C. (2018). Can the world’s favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites? Plant Cell Rep., 37 (10), 1443–1450.
- Manzo, N., Pizzolongo, F., Meca, G., Aiello, A., Marchetti, N., Romano, R. (2018). Comparative Chemical Compositions of Fresh and Stored Vesuvian PDO “Pomodorino Del Piennolo”. Molecules, 23 (2871), 1–13.
- Markovic, K., Hruškar, M., Vahčič, N. (2006). Lycopene content of tomato products and their contribution to the lycopene intake of Croatians. Nutr. Res. 26 (11), 556–560.10.1016/j.nutres.2006.09.010
- Marti, R., Rosello, S., Cebolla-Cornejo, J. (2016). Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancer (Basel), 8 (6), 58–67.10.3390/cancers8060058493162327331820
- Mueller, L., Boehm, V. (2011). Antioxidant activity of ß-carotene compounds in different in vitro assays. Molecules, 16(2), 1055–1069.10.3390/molecules16021055
- Nagata, M., Yamashita, I. (1992) Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J. Japan Food Sci Technol. 39, 925–928.10.3136/nskkk1962.39.925
- Narvez, B., Letard, M., Graselly, D., Jost, M. (1999) Les criteres de qualite de la tomate. Infos-Ctifl. 155, 41-47.
- Nielsen, S. (2003). Food Analysis. 3rd ed. Kluwer Academic/Plenum Publishers, New-York. 534 pp.
- Nour, V., Ionica, M.E., Trandafir, I. (2015). Bioactive compounds, antioxidant activity and color of hydroponic tomato fruits at different stages of ripening. Not. Bot. Horti Agrob. Cluj-Napoca. 43, 404–412.10.15835/nbha43210081
- Omotayo, T. C., Adedeji, O. (2015). Morphological survey of the fruits of the cultivated (Solanum lycopersicum Linn.) and wild (Solanum pimpinellifolium Miller) tomatoes in Ile-Ife, Nigeria. J. of Adv. Lab. Res. Biol. 6(1), 33–39.
- Peixoto, J. V. M., Neto, C. de M. S., Campos, L. F. C., Dourado, W. de S., Nogueira, A. P. O., Nascimento, A. dos R. (2017). Industrial tomato lines: Morphological properties and productivity. Genet. Mol. Res., 16 (2). doi: 10.4238/gmr16029540.10.4238/gmr16029540
- Rodríguez-Ortega, W. M., Martínez, V., Nieves, M., Simón, I., Lidón, V., Fernandez-Zapata, J. C., Martinez-Nicolas, J. J., Cámara-Zapata, J. M., Garcķa-Sánchez, F. (2019). Agricultural and physiological responses of tomato plants grown in different soilless culture systems with saline water under greenhouse conditions. Sci. Rep., 9 (1), 6733.
- Sánchez-Rodríguez, E., Ruiz, J. M., Ferreres, F., Moreno, D. A. (2012). Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique. Food Chem., 134 (2), 775–782.10.1016/j.foodchem.2012.02.180
- Sen, S. (2019). The chemistry and biology of lycopene: Antioxidant for human health. Int. J. Adv. Life Sci. Res., 02 (04), 8–14.10.31632/ijalsr.2019v02i04.002
- Singh, M., Prasanna, H. C., Tiwari, S., Gujjar, R. S., Karkute, S. G. (2016). Biology of Solanum lycopersicum (Tomato). Ministry of Environment, Forest and Climate Change Government of India, New Delhi. 48 pp.
- Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol., 29, 152–178.10.1016/S0076-6879(99)99017-1
- Takacs, S., Pek, Z., Csanyi, D., Daood, H.G., Szuvandzsiev, P., Palotas, G., Helyes, L. (2020). Influence of water stress levels on the yield and lycopene content in tomatoes. Water, 12 (8), 2165, 1–17.
- Vallverdú-Queralt, A., Medina-Remón, A., Casals-Ribes, I., Andres-Lacueva, C., Waterhouse, A. L., Lamuela-Raventos, R. M. (2012). Effect of tomato industrial processing on phenolic profile and hydrophilic antioxidant capacity. LWT - Food Sci. Technol., 47 (1), 154–160.10.1016/j.lwt.2011.12.020
- Wang, W., Guo, J., Zhang, J., Peng, J., Liu, T., Xin, Z. (2015). Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran. Food Chem., 171, 40–49.10.1016/j.foodchem.2014.08.095
- Xie, B., Wei, J., Zhang, Yi, Song, S., Su, W., Sun, G., Hao, Y., Liu, H. (2019). Supplemental blue and red light promote lycopene synthesis in tomato fruits. J. Integr. Agric., 18 (3), 590–598.10.1016/S2095-3119(18)62062-3