Have a personal or library account? Click to login
Quality of Different Coloured Tomatoes Depending on the Growing Season Cover

References

  1. Ajdanian, L., Aroiee, H., Azizi, M., Babaei, M., (2020). Changes in biochemical properties of tomato (cv. 240) affected by combination of blue/red optical spectra and Calfomyth spray (Ca and P). Int. J. Agric. Biol. Eng., 13 (5), 79–84.
  2. Alenazia, M. M., Shafiga, M., Alsadona, A. A., Alhelalc, I. M., Alhamdancb, A. M., Soleimana, T. H. I., Ibrahima, A. A., Shady, M. R., Al-Selweyaa, W. A. (2020). Improves functional and nutritional properties of tomato fruits during cold storage. Saudi J. Biol. Sci., 27, 1467–1474.10.1016/j.sjbs.2020.03.026725404132489282
  3. Anton, D., Bender, I., Kaart, T., Roasto, M., Heinonen, M., Luik, A., Püssa, T. (2017). Changes in polyphenols contents and antioxidant capacities of organically andconventionally cultivated tomato (Solanum lycopersicum L.) fruits duringripening. Int. J. Analyt. Chem., 2017, 2367453.
  4. Antonious, G., Turley, E., Dawood, M. (2019). Ascorbic acid, sugars, phenols, and nitrates concentrations in tomato grown in animal manure amended soil. Agriculture (Switzerland), 9 (5), 94.10.3390/agriculture9050094
  5. Asensio, E., Sanvicente, I., Mallor, C., Menal-Puey, S. (2019). Spanish traditional tomato. Effects of genotype, location and agronomic conditions on the nutritional quality and evaluation of consumer preferences. Food Chem., 270, 452–458.10.1016/j.foodchem.2018.07.13130174071
  6. Barickman, T. C., Kopsell, D. A., Sams, C. E. (2017). Abscisic acid improves tomato fruit quality by increasing soluble sugar concentrations. J. Plant Nutr., 40 (7), 964–973.10.1080/01904167.2016.1231812
  7. Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol., 63 (1), 129–140.10.1016/j.postharvbio.2011.05.016
  8. Bojarska, J. E., Pilat, B., Majewsks, K. M., Sobiechowska, D. A., Narwojsz, A. (2020). Selected physical parameters and chemical compunds of different types of tomatos. Czech J. Food Sci., 38 (1), 28–35.10.17221/232/2019-CJFS
  9. Burton-Freeman, B., Reimers, K. (2011). Tomato consumption and health: Emerging benefits. Amer. J. Lifestyle Med., 5 (2), 182–191.10.1177/1559827610387488
  10. Carli, P., Barone, A., Fogliano, V., Frusciante, L., Ercolano, M. R. (2011). Dissection of genetic and environmental factors involved in tomato organoleptic quality. BMC Plant Biol., 11, 58.10.1186/1471-2229-11-58308029421453463
  11. Cortés-Olmos, C., Leiva-Brondo, M., Roselló, J., Raigónc, M. D., Cebolla-Cornejo, J. (2014). The role of traditional varieties of tomato as sources of functional compounds. J. Sci. Food Agric., 94 (14), 2888–2904.10.1002/jsfa.662924578266
  12. Coyago Cruz, E., Corell, M., Moriana, A., Brahm, P. M., Hernanz, D., Stinco, C. M., Beltrán-Sinchiguano, E., Meléndez-Martínez, A. J. (2019). Study of commercial quality parameters, sugars, phenolics, carotenoids and plastids in different tomato varieties. Food Chem., 277, 480–489
  13. Coyago-Cruz, E., Corell, M., Moriana, A., Hernanz, D., Stinco, C.M., Meléndez-Martķnez, A. J. (2017). Effect of the fruit position on the cluster on fruit quality,carotenoids, phenolics and sugars in cherry tomatoes (Solanum lycopersicum L.). Food Res. Int., 100, 804–813.10.1016/j.foodres.2017.08.00228873753
  14. Dūma, M., Alsiņa, I., Dubova, L., Erdberga, I. (2018). Bioactive compounds in tomatoes at different stages of maturity. Proc. Latvian Acad. Sci., Section B, 72 (2), 85–90.10.2478/prolas-2018-0014
  15. Flores, P., Sánchez, E., Fenoll, J., Hellķn, P. (2017). Genotypic variability of carotenoidsin traditional tomato cultivars. Food Res. Int., 100, 510–516.10.1016/j.foodres.2016.07.01428964375
  16. Garande, V. K., Patil, R. S. (2014). Orange fruited tomato cultivars: Rich source of beta carotene. J. Hortic., 1, 1–5.
  17. Garcia, D., Narváez-Vásquez, J., Orozco-Cárdenas, M. L. (2017). Tomato (Solanum lycopersicum). In: Safety Assessment of Transgenic Organisms in the Environment, Volume 7: OECD Consensus Documents. OECD Publishing, Paris, pp. 69–104.
  18. Gorecka, D., Wawrzyniak. A., Jedrusek-Golinska, A., Dziedzic, K., Hamulka, J., Kowalczewski, P. L., Walkowiak, J. (2020). Lycopene in tomatoes and tomato products. Open Chem., 18, 752–756.10.1515/chem-2020-0050
  19. Hasan, T., Sultana, M. (2017). Lycopene and cardiovascular diseases: A review of the literature. Int. J. Res. Rev., 4 (1), 73–86.
  20. Helyes, L., Pék, Z., Lugasi, A. (2008). Function of the variety technological traits and growing conditions on fruit components of tomato (Lycopersicon lycopersicum L. Karsten). Acta Aliment., 37 (4), 427–436.10.1556/AAlim.2008.0010
  21. Iglesias, M. J., García-López, J., Collados-Luján, J. F., López-Ortiz, F., Díaz, M., Toresano, F., Camacho, F. (2015). Differential response to environmental and nutritional factors of high-quality tomato varieties. Food Chem., 176, 278–287.10.1016/j.foodchem.2014.12.04325624234
  22. Kacjan Maršić, N., Gašperlin, L., Abram, V., Budić, M., Vidrih, R. (2011). Quality parameters and total phenolic content in tomato fruits regarding cultivar and microclimatic conditions. Turk. J. Agric. For., 35(2), 185–194.
  23. Kelkel, M., Schumacher, M., Dicato, M., Diederich, M. (2011). Antioxidant and anti-proliferative properties of lycopene. Free Radic. Res.,45 (8), 925–940.10.3109/10715762.2011.56416821615277
  24. Kondratieva, I. Y., Golubkina, N. A. (2016). Lycopene and ß-carotene of tomato. Vegetable crops of Russia [Кондратьева И. Ю., Голубкина Н. А. Ликопин и ß-каротин томатоa. Овощu России], 33 (4), 80–83.
  25. Kotíková, Z., Lachman, J., Hejtmánková, A., Hejtmánková, K. (2011). Determination of antioxidant activity and antioxidant content in tomato varieties and evaluation of mutual interactions between antioxidants. LWT -Food Sci. Technol., 44 (8), 1703–1710.10.1016/j.lwt.2011.03.015
  26. Leopold, J. A. (2015). Antioxidants and coronary artery disease: From pathophysiology to preventive therapy. Coron. Artery Dis., 26 (2), 176–183.10.1097/MCA.0000000000000187431573725369999
  27. Li, Y., Wang, H., Zhang, Y., Martin, C. (2018). Can the world’s favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites? Plant Cell Rep., 37 (10), 1443–1450.
  28. Manzo, N., Pizzolongo, F., Meca, G., Aiello, A., Marchetti, N., Romano, R. (2018). Comparative Chemical Compositions of Fresh and Stored Vesuvian PDO “Pomodorino Del Piennolo”. Molecules, 23 (2871), 1–13.
  29. Markovic, K., Hruškar, M., Vahčič, N. (2006). Lycopene content of tomato products and their contribution to the lycopene intake of Croatians. Nutr. Res. 26 (11), 556–560.10.1016/j.nutres.2006.09.010
  30. Marti, R., Rosello, S., Cebolla-Cornejo, J. (2016). Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancer (Basel), 8 (6), 58–67.10.3390/cancers8060058493162327331820
  31. Mueller, L., Boehm, V. (2011). Antioxidant activity of ß-carotene compounds in different in vitro assays. Molecules, 16(2), 1055–1069.10.3390/molecules16021055
  32. Nagata, M., Yamashita, I. (1992) Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J. Japan Food Sci Technol. 39, 925–928.10.3136/nskkk1962.39.925
  33. Narvez, B., Letard, M., Graselly, D., Jost, M. (1999) Les criteres de qualite de la tomate. Infos-Ctifl. 155, 41-47.
  34. Nielsen, S. (2003). Food Analysis. 3rd ed. Kluwer Academic/Plenum Publishers, New-York. 534 pp.
  35. Nour, V., Ionica, M.E., Trandafir, I. (2015). Bioactive compounds, antioxidant activity and color of hydroponic tomato fruits at different stages of ripening. Not. Bot. Horti Agrob. Cluj-Napoca. 43, 404–412.10.15835/nbha43210081
  36. Omotayo, T. C., Adedeji, O. (2015). Morphological survey of the fruits of the cultivated (Solanum lycopersicum Linn.) and wild (Solanum pimpinellifolium Miller) tomatoes in Ile-Ife, Nigeria. J. of Adv. Lab. Res. Biol. 6(1), 33–39.
  37. Peixoto, J. V. M., Neto, C. de M. S., Campos, L. F. C., Dourado, W. de S., Nogueira, A. P. O., Nascimento, A. dos R. (2017). Industrial tomato lines: Morphological properties and productivity. Genet. Mol. Res., 16 (2). doi: 10.4238/gmr16029540.10.4238/gmr16029540
  38. Rodríguez-Ortega, W. M., Martínez, V., Nieves, M., Simón, I., Lidón, V., Fernandez-Zapata, J. C., Martinez-Nicolas, J. J., Cámara-Zapata, J. M., Garcķa-Sánchez, F. (2019). Agricultural and physiological responses of tomato plants grown in different soilless culture systems with saline water under greenhouse conditions. Sci. Rep., 9 (1), 6733.
  39. Sánchez-Rodríguez, E., Ruiz, J. M., Ferreres, F., Moreno, D. A. (2012). Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique. Food Chem., 134 (2), 775–782.10.1016/j.foodchem.2012.02.180
  40. Sen, S. (2019). The chemistry and biology of lycopene: Antioxidant for human health. Int. J. Adv. Life Sci. Res., 02 (04), 8–14.10.31632/ijalsr.2019v02i04.002
  41. Singh, M., Prasanna, H. C., Tiwari, S., Gujjar, R. S., Karkute, S. G. (2016). Biology of Solanum lycopersicum (Tomato). Ministry of Environment, Forest and Climate Change Government of India, New Delhi. 48 pp.
  42. Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol., 29, 152–178.10.1016/S0076-6879(99)99017-1
  43. Takacs, S., Pek, Z., Csanyi, D., Daood, H.G., Szuvandzsiev, P., Palotas, G., Helyes, L. (2020). Influence of water stress levels on the yield and lycopene content in tomatoes. Water, 12 (8), 2165, 1–17.
  44. Vallverdú-Queralt, A., Medina-Remón, A., Casals-Ribes, I., Andres-Lacueva, C., Waterhouse, A. L., Lamuela-Raventos, R. M. (2012). Effect of tomato industrial processing on phenolic profile and hydrophilic antioxidant capacity. LWT - Food Sci. Technol., 47 (1), 154–160.10.1016/j.lwt.2011.12.020
  45. Wang, W., Guo, J., Zhang, J., Peng, J., Liu, T., Xin, Z. (2015). Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran. Food Chem., 171, 40–49.10.1016/j.foodchem.2014.08.095
  46. Xie, B., Wei, J., Zhang, Yi, Song, S., Su, W., Sun, G., Hao, Y., Liu, H. (2019). Supplemental blue and red light promote lycopene synthesis in tomato fruits. J. Integr. Agric., 18 (3), 590–598.10.1016/S2095-3119(18)62062-3
DOI: https://doi.org/10.2478/prolas-2022-0014 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 89 - 95
Submitted on: Mar 22, 2021
Accepted on: Nov 24, 2021
Published on: Mar 3, 2022
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 Māra Dūma, Ina Alsiņa, Laila Dubova, Diāna Gavare, Ieva Erdberga, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.