Abete, I., Perez-Cornago, A., Navas-Carretero, S., Bondia-Pons, I., Zulet, M. A., Martinez, J. A. (2013). A regular lycopene enriched tomato sauce consumption influences antioxidant status of healthy young-subjects: A crossover study. J. Funct. Foods, 5, 28–35.10.1016/j.jff.2012.07.007
Bhowmik, D., Sampath Kumar, K. P., Paswan, S., Srivastava, S. (2012). Tomato — a natural medicine and its health benefits. J. Pharmacogn. Phytochem., 1 (1), 33–43.
Blum, A., Monir, M., Wirsansky, I., Ben-Arzi, S. (2005). The beneficial effects of tomatoes. Eur. J. Intern. Med., 16, 402–404.10.1016/j.ejim.2005.02.01716198897
Brandt, S., Pek, Z., Barna, E. (2006). Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J. Sci. Food. Agric., 86, 568–572.10.1002/jsfa.2390
Choi, S. H., Kim, D. S., Kozukue, N., Kim, H. J., Nishitani, Y., Mizuno, M., Levin, C. E., Friedman, M. (2014). Protein, free amino acid, phenolic, bcarotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 greenhouse-grown commercial cherry tomato varieties. J. Food Compos. Anal., 34, 115–127.10.1016/j.jfca.2014.03.005
Choi, S. H., Lee, S. H., Kim, H. J., Lee, I. S., Kozukue, N., Levin, C. E., Friedman, M. (2010). Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. J. Agric. Food. Chem., 58, 7547–7556.10.1021/jf100162j20560602
De Sousa, F. A., Neves, A. N., De Queiroz, M. E. L. R., Heleno, F. F., Teofilo, R., F., de Pinho, G. P. (2014). Influence of ripening stages of tomatoes in the analysis of pesticides by gas chromatography. J. Braz. Chem. Soc., 25 (8), 1431–1438.10.5935/0103-5053.20140125
Del Giudice, R., Raiola, A., Tenore, G.C., Frusciante, L., Baron, A., Monti, D.M., Rigano, M. M. (2015). Antioxidant bioactive compounds in tomato fruits at different ripening stages and their effects on normal and cancer cells. J. Funct. Foods, 18, 83–94.10.1016/j.jff.2015.06.060
Dumas, Y., Dadomo, M., Di Lucca, G., Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric., 83, 369–382.10.1002/jsfa.1370
Erba, D., Casiraghi, M.C., Ribas-Agustż, A., Ca’Ceres, R., Marfà, O., Castellari, M. (2013). Nutritional value of tomatoes (Solanum lycopersicum L.) grown in greenhouse by different agronomic techniques. J. Food Compost. Anal.,31, 245–251.10.1016/j.jfca.2013.05.014
Gautier, H., Diakou-Verdin, V., Benard, C., Reich, M., Buret, M., Bourgaud, F., Poessel, J. L., Caris-Veyrat, C., Genard, M. (2008). How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J. Agric. Food Chem., 56, 1241–1250.10.1021/jf072196t
George, B, Tourniaire, F., Gautier, H., Goupy, P., Rock, E., Caris-Veyrat, C. (2011). Changes in the content of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chem., 124, 1603–1611.10.1016/j.foodchem.2010.08.024
Kim, D., Jeong, S. W., Lee C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem., 81, 321–326.10.1016/S0308-8146(02)00423-5
Lenucci, M. S., Cadinu, D., Taurino, M., Piro, G., Dalessandro, G. (2006). Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem., 54, 2606–2613.10.1021/jf052920c16569051
Maršic, N. K., Gašperlin, L., Abram, V., Budič, M., Vidrih, R. (2011). Quality parameters and total phenolic content in tomato fruits regarding cultivar and microclimatic conditions. Turk. J. Agric For,. 35, 185–194.10.3906/tar-0910-499
Nagata, M., Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J. Japan Food Sci. Techn., 39, 925–928.10.3136/nskkk1962.39.925
Ried, K., Fakler, P. (2011). Protective effect of lycopene on serum cholesterol and blood pressure: Meta-analyses of interventional trials. Maturitas, 68, 299–310.10.1016/j.maturitas.2010.11.018
Sánchez-Rodríguez, E., Ruiz, J.M., Ferreres, F., Moreno, D. A. (2012). Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique. Food Chem., 134, 775–782.10.1016/j.foodchem.2012.02.180
Shi, J., Dai, Y., Kakuda, Y., Mittal, G., Xue, S.J. (2008). Effect of heating and exposure to light on the stability of lycopene in tomato purene. Food Control,19, (5), 514–520.10.1016/j.foodcont.2007.06.002
Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol., 299, 152–178.10.1016/S0076-6879(99)99017-1
Stewart, A. J., Bozzonet, S., Mullen, W., Jenkins, G. I., Lean, M. E. J., Croizer, A. (2000). Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem., 48, 2663–2669.10.1021/jf000070p10898604
Vallverdś-Queralt, A., Medina-Remón, A., Andres-Lacueva, C., Lamuela-Raventos, R. M. (2011). Changes in phenolic profile and antioxidant activity during production of diced tomatoes. Food Chem., 126, 1700–1707.10.1016/j.foodchem.2010.12.06125213947
Vinha, A. F., Barreira, S. V. P., Costa, A. S. G., Alves, R. C., Oliveira, M. B. P. P. (2014a). Organic versus conventional tomatoes: Influence on phytsicochemical parameters, bioactive compounds and sensorial attributes. Food Chem. Toxicol., 67, 139–144.10.1016/j.fct.2014.02.01824569070
Vinha, A. F., Alves, R. C., Barreira, S. V. P., Castro, A., Costa, A. S. G., Oliveira M. B. P. P. (2014b). Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT Food Sci. Technol., 55, 197–202.10.1016/j.lwt.2013.07.016