Abstract
Maintaining a specified distance from target vessels is a common requirement in maritime management. The tracking control is inherently complex, demanding both accurate target tracking and frequent adjustments to the propeller and rudder, which can lead to increased energy consumption and accelerated mechanical wear. This study introduces a distance-keeping tracking model for manoeuvring marine vessels, along with a balanced objective model predictive control (BOMPC) algorithm. BOMPC was developed based on the Marine Manoeuvring Group (MMG) dynamics model. Beyond prioritising the tracking accuracy, the algorithm incorporates the propeller speed and rudder angle from the dynamics model as optimisation criteria within the MPC framework. This enables the simultaneous control of the tracking vessel’s speed and heading, comprehensively addressing both the tracking accuracy requirements of target tracking and the considerations of energy consumption and mechanical wear. The accuracy and effectiveness of the proposed target tracking model and control algorithm are validated through both simulation and experiments. This research has potential applications in maritime management, marine search and rescue, and related domains.