References
- Bogue R. Underwater robots: A review of technologies and applications. Industrial Robot: An International Journal 42(3), 186–191, 2015, https://doi.org/10.1108/IR-01-2015-0010.
- Neira J, Sequeiros C, Huamani R, et al. Review on unmanned underwater robotics, structure designs, materials, sensors, actuators, and navigation control. Journal of Robotics 2021(1), 5542920, 2021, https://doi.org/10.1155/2021/5542920.
- Hasan K, Ahmad S, Liaf A F, et al. Oceanic challenges to technological solutions: A review of autonomous underwater vehicle path technologies in biomimicry, control, navigation and sensing. IEEE Access, 2024, https://doi.org/10.1109/ACCESS.2024.3380458.
- Luvisutto A, Al Shehhi A, Mankovskii N, et al. Robotic swarm for marine and submarine missions: Challenges and perspectives. In 2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV). IEEE, 2022, 1–8, https://doi.org/10.1109/AUV53081.2022.9965934.
- Gao Z, Shi Q, Fukuda T, et al. An overview of biomimetic robots with animal behaviors. Neurocomputing 332, 339–350, 2019, https://doi.org/10.1016/j.neucom.2018.12.071.
- Wang R, Du J, Xiong Z, et al. Hierarchical collaborative navigation method for UAV swarm. Journal of Aerospace Engineering 34(1), 04020097, 2021, https://doi.org/10.1061/(ASCE)AS.1943-5525.0001216.
- Liu X, Yan C, Zhou H, et al. Towards flocking navigation and obstacle avoidance for multi-UAV systems through hierarchical weighting Vicsek model. Aerospace 8(10), 286, 2021, https://doi.org/10.3390/aerospace8100286.
- Wang F, Chen Y. A novel hierarchical flocking control framework for connected and automated vehicles. IEEE Transactions on Intelligent Transportation Systems 22(8), 4801–4812, 2020, https://doi.org/10.1109/TITS.2020.2986436.
- Rehman F U, Thomas G, Anderlini E. Centralized control system design for underwater transportation using two hovering autonomous underwater vehicles (HAUVs). IFACPapersOnLine 52(11), 13–18, 2019, https://doi.org/10.1016/j.ifacol.2019.09.111.
- Zhao R, Miao M, Lu J, et al. Formation control of multiple underwater robots based on ADMM distributed model predictive control. Ocean Engineering 257, 111585, 2022, https://doi.org/10.1016/j.oceaneng.2022.111585.
- Quattrini Li A, Carver C J, Shao Q, et al. Communication for underwater robots: Recent trends. Current Robotics Reports 4(2), 13–22, 2023, https://doi.org/10.1007/s43154-023-00100-4.
- Antonelli G. Interconnected dynamic systems: An overview on distributed control. IEEE Control Systems Magazine 33(1), 76–88, 2013, https://doi.org/10.1109/MCS.2012.2225929.
- Huy D Q, Sadjoli N, Azam A B, et al. Object perception in underwater environments: A survey on sensors and sensing methodologies. Ocean Engineering 267, 113202, 2023, https://doi.org/10.1016/j.oceaneng.2022.113202.
- Vicsek T, Czirók A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles. Physical Review Letters 75(6), 1226–1229, 1995, https://doi.org/10.1103/PhysRevLett.75.1226.
- Jia Y, Vicsek T. Modelling hierarchical flocking. New Journal of Physics 21(9), 093048, 2019, https://doi.org/10.1088/1367-2630/ab428e.
- Kim J. Leader-based flocking of multiple swarm robots in underwater environments. Sensors 23(11), 5305, 2023, https://doi.org/10.3390/s23115305.
- Zhao Q, Luan Y, Li S, et al. The influences of self-introspection and credit evaluation on self-organized flocking. Applied Sciences 13(18), 10361, 2023, https://doi.org/10.3390/app131810361.
- Jia Y, Wang L. Leader–follower flocking of multiple robotic fish. IEEE/ASME Transactions on Mechatronics 20(3), 1372–1383, 2015, https://doi.org/10.1109/TMECH.2014.2337375.
- Shen J. Cucker–Smale flocking under hierarchical leadership. SIAM Journal on Applied Mathematics 68(3), 694–719, 2008, https://doi.org/10.1137/060673254.
- Han W, Wang J, Wang Y, et al. Multi-UAV flocking control with a hierarchical collective behavior pattern inspired by sheep. IEEE Transactions on Aerospace and Electronic Systems, 2024, https://doi.org/10.1109/TAES.2024.3351961.
- Cai W, Liu Z, Zhang M, et al. Cooperative artificial intelligence for underwater robotic swarm. Robotics and Autonomous Systems 164, 104410, 2023, https://doi.org/10.1016/j.robot.2023.104410.
- Zhao Q, Li S, Wang G, et al. A local consistency algorithm to shorten the convergence time and improve the robustness of self-propelled swarms. In 2020 Chinese Automation Congress (CAC). IEEE, 2020, 4153–4157, https://doi.org/10.1109/CAC51589.2020.9327201.
- Tiwari R, Jain P, Butail S, et al. Effect of leader placement on robotic swarm control. Proceedings of the 16th Conference on Autonomous Agents and Multiagent Systems, 2017, 1387–1394, https://dl.acm.org/citation.cfm?id=3091316&CFID=840116400&CFTOKEN=63016478.