Have a personal or library account? Click to login
Three-Dimensional Underwater Path Planning Based on Modified Potential Field Algorithm in Time-Varying Current Cover

Three-Dimensional Underwater Path Planning Based on Modified Potential Field Algorithm in Time-Varying Current

Open Access
|Apr 2023

References

  1. T. Yan, Z. Xu, S. X. Yang, and S. A. Gadsden, “Formation Control of Multiple Autonomous Underwater Vehicles: a review,” Intelligence & Robotics, vol. 3, no. 1, 2023, doi: 10.20517/ir.2023.01.
  2. H. Choukri and L. Z. Qidan, “Path Following Control of Fully Actuated Autonomous Underwater Vehicle Based on LADRC,” Polish Maritime Research, vol. 25, no. 4, 2018, doi: 10.2478/pomr-2018-0130.
  3. W. Yu, K. H. Low, and L. Chen, “Cooperative Path Planning for Heterogeneous Unmanned Vehicles in a Search-and-Track Mission Aiming at an Underwater Target,” IEEE Trans. Veh. Technol., vol. 99, 2020, doi:10.1109/TVT.2020.2991983.
  4. L. Rowinski and M. Kaczmarczyk, “Evaluation of Effectiveness of Water-jet Propulsor for a Small Underwater Vehicle,” Polish Maritime Research, vol. 28, no. 4, 2022, doi: 10.2478/pomr-2021-0047.
  5. S. Wang, H. Zhang, S. Baldi, and R. Zhong, “Leaderless Consensus of Heterogeneous Multiple Euler-Lagrange Systems with Unknown Disturbance,” ArXiv, 2021, doi:10.1109/tac.2022.3172594.
  6. S. Wang and X. Meng, “Adaptive Consensus and Parameter Estimation of Multi-agent Systems with an Uncertain Leader,” IEEE Trans. Autom. Control, vol. 66, 2020, doi:10.1109/tac.2020.3046215.
  7. S. Wang, H. Zhang, and Z. Chen, “Adaptive Cooperative Tracking and Parameter Estimation of an Uncertain Leader over General Directed Graphs,” IEEE Trans. Autom. Control, 2020, doi:10.1109/tac.2022.3197670.
  8. Z. Zeng, L. Lian, K. Sammut, F. He, Y. Tang, and A. Lammas, “A Survey on Path Planning for Persistent Autonomy of Autonomous Underwater Vehicles,” Ocean Engineering, vol. 110, 2015, doi:10.1016/j.oceaneng.2015.10.007.
  9. Y. Ma, Y. Gong, C. Xiao, Y. Gao, and J. Zhang, “Path Planning for Autonomous Underwater Vehicles: An Ant Colony Algorithm Incorporating Alarm Pheromone,” IEEE Trans. Veh. Technol., 2018, doi:10.1109/TVT.2018.2882130.
  10. B. Hadi, A. Khosravi, and P. Sarhadi, “A Review of the Path Planning and Formation Control for Multiple Autonomous Underwater Vehicles,” Journal of Intelligent & Robotic Systems, vol. 101, no. 4, 2021, doi:10.1007/s10846-021-01330-4.
  11. L. Song, H. Chen, W. Xiong, Z. Dong, P. Mao, Z. Xiang, and K. Hu, “Method of Emergency Collision Avoidance for Unmanned Surface Vehicle (USV) Based on Motion Ability Database,” Polish Maritime Research, vol. 26, no. 2, 2019, doi: 10.2478/pomr-2019-0025.
  12. N. Lefebvre, I. Schjølberg, and I. Utne, “Integration of Risk in Hierarchical Path Planning of Underwater Vehicles,” IFAC PapersOnLine, vol. 49, no. 23, 2016, doi:10.1016/j.ifacol.2016.10.347.
  13. Z. Zeng, K. Sammut, L. Lian, F. He, A. Lammas, and Y. Tang, “A Comparison of Optimization Techniques for AUV Path Planning in Environments with Ocean Currents,” Robotics and Autonomous Systems, vol. 82, 2016, doi: 10.1016/j.robot.2016.03.011.
  14. H. Niu, Y. Lu, A. Savvaris, and A. Tsourdos, “An Energy-Efficient Path Planning Algorithm for Unmanned Surface Vehicles,” Ocean Engineering, vol. 161, 2018, doi: 10.1016/j.oceaneng.2018.01.025.
  15. Y. Li, F. Zhang, D. Xu, and J. Dai, “Liveness-Based RRT Algorithm for Autonomous Underwater Vehicles Motion Planning,” Journal of Advanced Transportation, 2017, doi: 10.1155/2017/7816263.
  16. R. Cui, L. Yang, and W. Yan, “Mutual Information-Based Multi-AUV Path Planning for Scalar Field Sampling Using Multidimensional RRT,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 46, no. 7, 2017, doi: 10.1109/TSMC.2015.2500027.
  17. K. Sun and X. Liu, “Path Planning for an Autonomous Underwater Vehicle in a Cluttered Underwater Environment Based on the Heat Method,” International Journal of Applied Mathematics and Computer Science, vol. 31, 2021, doi: 10.34768/amcs-2021-0020.
  18. R. Song, Y. Liu, and R. Bucknall, “A Multi-Layered Fast Marching Method for Unmanned Surface Vehicle Path Planning in a Time-variant Maritime Environment,” Ocean Engineering, vol. 129, 2017, doi: 10.1016/j.oceaneng.2016.11.009.
  19. Y. K. Hwang and N. Ahuja, “A Potential Field Approach to Path Planning,” IEEE Trans. Robot. Autom., vol. 8, no. 1, 1992, doi: 10.1109/70.127236.
  20. S. Saravankumar and T. Asokan, “Multipoint Potential Field Method for Path Planning of Autonomous Underwater Vehicles in 3D Space,” Intelligent Service Robotics, vol. 6, no. 4, 2013, doi: 10.1007/s11370-013-0138-2.
  21. S. S. Ge and Y. J. Cui, “New Potential Functions for Mobile Robot Path Planning,” IEEE Trans. Robot. Autom., vol. 16, no. 5, 2000, doi:10.1109/70.880813.
  22. E. Hernandez, M. Carreras, and P. Ridao, “A Comparison of Homotopic Path Planning Algorithms for Robotic Applications,” Robotics & Autonomous Systems, vol. 64, 2015, doi: 10.1016/j.robot.2014.10.021.
  23. S. Wang, M. Fu, Y. Wang, and L. Zhao, “A Multi-Layered Potential Field Method For Water-Jet Propelled Unmanned Surface Vehicle Local Path Planning With Minimum Energy Consumption,” Polish Maritime Research, vol. 26, no. 1, 2019, doi: 10.2478/pomr-2019-0015.
  24. J. Song, C. Hao, and J. Su, “Path Planning for Unmanned Surface Vehicle Based on Predictive Artificial Potential Field,” International Journal of Advanced Robotic Systems, vol. 17, 2020, doi: 10.1177/1729881420918461.
  25. M. Fu, S. Wang, and Y. Wang, “Multi-Behavior Fusion Based Potential Field Method for Path Planning of Unmanned Surface Vessel,” China Ocean Engineering, vol. 33, no. 5, 2019, doi: 10.1007/s13344-019-0056-y.
  26. Y. Rasekhipour, A. Khajepour, Shih-Ken Chen, and B. Litkouhi, “A Potential Field-Based Model Predictive Path-Planning Controller for Autonomous Road Vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 5, 2017, doi: 10.1109/TITS.2016.2604240.
  27. Y. Huang, H. Ding, Y. Zhang, H. Wang, D. Cao, N. Xu, and C. Hu, “A Motion Planning and Tracking Framework for Autonomous Vehicles Based on Artificial Potential Field-Elaborated Resistance Network (APFE-RN) Approach,” IEEE Trans. Ind. Electron., vol. 67, no. 2, 2019, doi: 10.1109/TIE.2019.2898599.
  28. J. Lee, “Heterogeneous-ants-based Path Planner for Global Path Planning of Mobile Robot Applications,” International Journal of Control Automation & Systems, vol. 15, no. 5, 2017, doi: 10.1007/s12555-016-0443-6.
  29. Y. Sun, X. Luo, X. Ran, and G. Zhang, “A 2D Optimal Path Planning Algorithm for Autonomous Underwater Vehicle Driving in Unknown Underwater Canyons,” Journal of Marine Science and Engineering, vol. 9, no. 3, 2021, doi: 10.3390/jmse9030252.
  30. E. Vidal, J. D. Hernández, K. Istenič, and M. Carreras, “Online View Planning for Inspecting Unexplored Underwater Structures,” IEEE Robot. Autom. Lett., vol. 2, no. 3, 2017, doi: 10.1109/LRA.2017.2671415.
  31. D. Zhu, W. Li, M. Yan, and Simon X. Yang, “The Path Planning of AUV Based on D-S Information Fusion Map Building and Bio-Inspired Neural Network in Unknown Dynamic Environment,” International Journal of Advanced Robotic Systems, vol. 11, no. 3, 2014, doi: 10.5772/56346.
  32. X. Yao, F. Wang, C. Yuan, J. Wang, and X. Wang, “Path Planning for Autonomous Underwater Vehicles based on Interval Optimization in Uncertain Flow Fields,” Ocean Engineering, vol. 234, 2021, doi: 10.1016/j.oceaneng.2021.108675.
  33. D. Zhu, H. Huang, and S. X. Yang, “Dynamic Task Assignment and Path Planning of Multi-AUV System Based on an Improved Self-Organizing Map and Velocity Synthesis Method in Three-Dimensional Underwater Workspace,” IEEE Trans. Cybern., vol. 43, no. 2, 2013, doi: 10.1109/TSMCB.2012.2210212.
  34. Y. Li, T. Ma, P. Chen, Y. Jiang, R. Wang, and Q. Zhang, “Autonomous Underwater Vehicle Optimal Path Planning Method for Seabed Terrain Matching Navigation,” Ocean Engineering, vol. 133, 2017, doi: 10.1016/j.oceaneng.2017.01.026.
  35. B. Sun, D. Zhu, and S. X. Yang, “An Optimized Fuzzy Control Algorithm for Three-Dimensional AUV Path Planning,” International Journal of Fuzzy Systems, vol. 20, no. 2, 2018, doi: 10.1007/s40815-017-0403-1.
  36. H. N. Esfahani and R. Szlapczynski, “Model Predictive Super-Twisting Sliding Mode Control for an Autonomous Surface Vehicle,” Polish Maritime Research, vol. 26, no. 3, 2019, doi: 10.2478/pomr-2019-0057.
  37. Z. Dong, Y. Liu, H. Wang, and T. Qin, “Method of cooperative formation control for underactuated USVS based on nonlinear backstepping and cascade system theory,” Polish Maritime Research, vol. 28, no. 1, 2021, doi: 10.2478/pomr-2021-0014.
  38. C. Lin, H. Wang, J. Yuan, and M. Fu, “An Online Path Planning Method Based on Hybrid Quantum Ant Colony Optimization for AUV,” International Journal of Robotics & Automation, vol. 106, 2018, doi: 10.2316/Journal.206.2018.4.206-5337.
  39. M. Chen and D. Zhu, “Optimal Time-Consuming Path Planning for Autonomous Underwater Vehicles Based on a Dynamic Neural Network Model in Ocean Current Environments,” IEEE Trans. Veh. Technol., vol. 69, no. 12, 2020, doi: 10.1109/TVT.2020.3034628.
DOI: https://doi.org/10.2478/pomr-2023-0004 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 33 - 42
Published on: Apr 19, 2023
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Shasha Wang, Guilin Feng, Dan Wang, Yulong Tuo, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.