Have a personal or library account? Click to login
Method of Cooperative Formation Control for Underactuated USVS Based on Nonlinear Backstepping and Cascade System Theory Cover

Method of Cooperative Formation Control for Underactuated USVS Based on Nonlinear Backstepping and Cascade System Theory

By: Zaopeng Dong,  Yang Liu,  Hao Wang and  Tao Qin  
Open Access
|Apr 2021

References

  1. 1. J. F. Jimenez and J. M. Giron-Sierra, “USV based automatic deployment of booms along quayside mooring ships: Scaled experiments and simulations,” Ocean Engineering, vol. 207, pp. 1−12, Jul. 2020. doi:10.1016/j.oceaneng.2020.107438.10.1016/j.oceaneng.2020.107438
  2. 2. J. Y. Zhuang, L. Zhang, Z. H. Qin, H. B. Sun, B. Wang, and J. Cao, “Motion control and collision avoidance algorithm for unmanned surface vehicle swarm in practical maritime environment,” Polish Maritime Research, vol. 26, no. 1, pp.107−116. doi: 10.2478/pomr-2019-0012.10.2478/pomr-2019-0012
  3. 3. B. C. Shah and S. K. Gupta, “Long-distance path planning for unmanned surface vehicles in complex marine environment,” IEEE Journal of Oceanic Engineering, vol. 45, no. 3, pp. 813−830, Jul. 2020. doi:10.1109/JOE.2019.2909508.10.1109/JOE.2019.2909508
  4. 4. X. Liang, X. R. Qu, Y. H. Hou, Y. Li, and R. B. Zhang, “Distributed coordinated tracking control of multiple unmanned surface vehicles under complex marine environments,” Ocean Engineering, vol. 205, pp. 1−9, Jun. 2020. doi:10.1016/j.oceaneng.2020.107328.10.1016/j.oceaneng.2020.107328
  5. 5. H. N. Esfahani and R. Szlapczynski, “Model predictive super-twisting sliding mode control for an autonomous surface vehicle”, Polish Maritime Research, vol. 26, no. 3, pp. 163−171, Sept. 2019. doi: 10.2478/pomr-2019-0057.10.2478/pomr-2019-0057
  6. 6. M. A. Hinostroza, H. T. Xu, and C. G. Soares, “Cooperative operation of autonomous surface vehicles for maintaining formation in complex marine environment,” Ocean Engineering, vol. 183, pp. 132−154, Jul. 2019. doi:10.1016/j. oceaneng.2019.04.098.
  7. 7. R. V. C. Vid, J. P. V. S. Cunha, and P. B. Garcia-Rosa, “Stabilizing control of an unmanned surface vehicle pushing a floating load,” International Journal of Control, Automation and Systems, vol. 18, pp. 1−10, Jun. 2020. doi:10.1007/s12555-019-0677-1.10.1007/s12555-019-0677-1
  8. 8. S. S. Wang and Y. L. Tuo, “Robust trajectory tracking control of underactuated surface vehicle with prescribed performance,” Polish Maritime Research, vol. 27, no. 4, pp. 148−156, Dec. 2020. doi: 10.2478/pomr-2020-0075.10.2478/pomr-2020-0075
  9. 9. C. Paliotta, E. Lefeber, K. Y. Pettersen, J. Pinto, M. Costa, and J. T. D. B. Sousa, “Trajectory tracking and path following for underactuated marine vehicles,” IEEE Transactions on Control Systems Technology, vol. 27, no. 4, pp. 1423−1437, Jul. 2019. doi:10.1109/TCST.2018.283-4518.
  10. 10. J. Han and J. Kim, “Three-dimensional reconstruction of a marine floating structure with an unmanned surface vessel,” IEEE Journal of Oceanic Engineering, vol. 44, no. 4, pp. 984−996, Oct. 2019. doi:10.11-09/JOE.2018.2862618.10.1109/JOE.2018.2862618
  11. 11. K. Shojaei, “Leader–follower formation control of underactuated autonomous marine surface vehicles with limited torque,” Ocean Engineering, vol. 105, pp. 196−205, Jun. 2015. doi:10.1016/j.oceaneng. 2015.06.026.
  12. 12. Z. Y. Gao and G. Guo, “Adaptive formation control of autonomous underwater vehicles with model uncertainties,” Int. J. Adapt. Control Signal Process, vol. 32, pp. 1067−1080, Mar. 2018. doi:10.1002/acs. 2886.
  13. 13. J. Ghommam and M. Saad, “Adaptive leader–follower formation control of underactuated surface vessels under asymmetric range and bearing constraints,” IEEE Transactions on Control Systems Technology, vol. 67, no. 2, pp. 852−865, Feb. 2018. doi:10.1109/TVT. 2017.2760367.
  14. 14. L. Y. Chen, H. Hopman, and R. R. Negenborn, “Distributed model predictive control for vessel train formations of cooperative multi-vessel systems,” Transportation Research Part C-Emerging Technologies, vol. 92, pp. 101−118, May 2018. doi:10.1016/j.trc.2018. 04.013.
  15. 15. J. X. Zhang and G. H. Yang, “Fault-tolerant leader-follower formation control of marine surface vessels with unknown dynamics and actuator faults,” Int. J. Robust Nonlinear Control, vol. 28, pp. 4188−4208, Apr. 2018. doi:10.1002/rnc.4228.10.1002/rnc.4228
  16. 16. M. Y. Fu and L. L. Yu, “Finite-time extended state observer-based distributed formation control for marine surface vehicles with input saturation and disturbances,” Ocean Engineering, vol. 159, pp. 219−227, Apr. 2018. doi:10.1016/j. oceaneng.2018.04.016.
  17. 17. T. S. Li, R. Zhao, C. L. P. Chen, L. Y. Fang, and C. Liu, “Finite-time formation control of under-actuated ships using nonlinear sliding mode control,” IEEE Transportation on Cybernetics, vol. 48, no. 11, pp. 3243−3253, Nov. 2018. doi:10.1109/TCYB.2018.2794968.10.1109/TCYB.2018.279496829994578
  18. 18. Z. J. Sun, G. Q. Zhang, Y. Lu, and W. D. Zhang, “Leader-follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation,” ISA Transactions, vol. 72, pp. 15−24, Nov. 2017. doi:10.1016/j.isatra.2017.11.008.10.1016/j.isatra.2017.11.00829221607
  19. 19. S. L. Dai, S. D. He, H. Lin, and C. Wang, “Platoon formation control with prescribed performance guarantees for USVs,” IEEE Transportation on Industrial Electronics, vol. 65, no. 5, pp. 4237−4246, May 2018. doi:10.1109/TIE.2017.2758743.10.1109/TIE.2017.2758743
  20. 20. Y. Lu, G. Q. Zhang, Z. J. Sun, and W. D. Zhang, “Robust adaptive formation control of underactuated autonomous surface vessels based on MLP and DOB,” Nonlinear Dynamics, vol. 94, pp. 503−519, Jun. 2018. doi:10.1007/s11071-018-4374-z.10.1007/s11071-018-4374-z
  21. 21. Y. Li and J. Zheng, “The design of ship formation based on a novel disturbance rejection control,” International Journal of Control, Automation and Systems, vol. 16, no. 4, pp. 1833−1839, Feb. 2018. doi: 10.1007/s12555-017-0424-4.10.1007/s12555-017-0424-4
  22. 22. B. S. Park and S. J. Yoo, “Adaptive-observe-based formation tracking of networked uncertain underactuated surface vessels with connectivity preservation and collision avoidance,” Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 356, pp. 7947−7966, Apr. 2019. doi:10.1016/j.jfranklin.2019.04.017.10.1016/j.jfranklin.2019.04.017
  23. 23. C. F. Huang, X. K. Zhang, and G. Q. Zhang, “Improved decentralized finite-time formation control of underactuated USVs via a novel disturbance observer,” Ocean Engineering, vol. 174, pp. 117−124, Jan. 2019. doi:10.1016/j.oceaneng.2019.01.043.10.1016/j.oceaneng.2019.01.043
  24. 24. Z. H. Peng, N. Gu, Y. Zhang, Y. J. Liu, D. Wang, and L. Liu, “Path-guided time-varying formation control with collision avoidance and connectivity preservation of under-actuated autonomous surface vehicles subject to unknown input gains,” Ocean Engineering, vol. 191, pp. 1−10, Oct. 2019. doi:10.1016/j.oceaneng.2019.106501.10.1016/j.oceaneng.2019.106501
  25. 25. J. Li, J. L. Du, and W. J. Chang, “Robust time-varying formation control for underactuated autonomous underwater vehicles with disturbances under input saturation,” Ocean Engineering, vol. 179, pp. 180−188, Mar. 2019. doi:10.1016/j.oceaneng.2019.03.017.10.1016/j.oceaneng.2019.03.017
  26. 26. H. N. Esfahani, R. Szlapcznski and H. Ghaemi, “High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-based adaptive gains and time delay estimation”, Ocean Engineering, vol. 191, no. 106526, pp.1−19, Nov. 2019. doi:10.1016/j.oceaneng.2019.106526.10.1016/j.oceaneng.2019.106526
  27. 27. T. Fossen, “Handbook of Marine Craft Hydrodynamics and Motion Control”, New York: Wiley, 2011.10.1002/9781119994138
  28. 28. E. Panteley, E, Lefeber, A. Loria and H. Nijmeijer, “Exponential tracking control of a mobile car using cascaded approach,” IFAC Proceedings, vol. 31, no. 27, pp. 201−206, 1998. doi: 10.1016/S1474-6670(17)40028-0.10.1016/S1474-6670(17)40028-0
  29. 29. H. K. Khalil, “Nonlinear Systems” 3rd ed., New Jersey: Prentice Hall, 2002.
  30. 30. K. D. Do and J. Pan, “Global robust adaptive path following of underactuated ships,” Automatica, vol. 42, no. 10, pp.1713−1722, Oct. 2006. doi: 10.1016/j. automatica.2006.01.026.
DOI: https://doi.org/10.2478/pomr-2021-0014 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 149 - 162
Published on: Apr 30, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Zaopeng Dong, Yang Liu, Hao Wang, Tao Qin, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.