Have a personal or library account? Click to login
A Multi-Layered Potential Field Method for Water-Jet Propelled Unmanned Surface Vehicle Local Path Planning with Minimum Energy Consumption Cover

A Multi-Layered Potential Field Method for Water-Jet Propelled Unmanned Surface Vehicle Local Path Planning with Minimum Energy Consumption

Open Access
|Apr 2019

References

  1. 1. Liu Z, Zhang Y, Yu X, et al.: Unmanned surface vehicles: An overview of developments and challenges. Annual Reviews in Control, vol.41, pp:71-93, 2016.10.1016/j.arcontrol.2016.04.018
  2. 2. Lazarowska, Agnieszka.: A new deterministic approach in a decision support system for ship’s trajectory planning. Expert Systems With Applications, vol.71, pp:469-478, 2017.10.1016/j.eswa.2016.11.005
  3. 3. Murphy R, Steimle E, Griffin C, et al. Cooperative use of unmanned sea surface and micro aerial vehicles at Hurricane Wilma. Journal of Field Robotics, 25(3):164–180, 2008.10.1002/rob.20235
  4. 4. Lazarowska A.: Swarm Intelligence Approach to Safe Ship Control. Polish Maritime Research, 22(4):34-40, 2015.10.1515/pomr-2015-0068
  5. 5. Li W, Ma W.: Simulation on Vessel Intelligent Collision Avoidance Based on Artificial Fish Swarm Algorithm. Polish Maritime Research, 23, 2016.10.1515/pomr-2016-0058
  6. 6. Shen Y, Zhao N, Xia M, et al.: A Deep Q-Learning Network for Ship Stowage Planning Problem. Polish Maritime Research, 24, 2017.10.1515/pomr-2017-0111
  7. 7. Chen D Z, Szczerba R J, Uhran J.: Planning conditional shortest paths through an unknown environment: a framed-quadtree approach. 1995.
  8. 8. Kamon I, Rivlin E.: Sensory based motion planning with global proofs. International Conference on Intelligent Robots and Systems. IEEE Computer Society, 1995.
  9. 9. Svec P, Gupta S K.: Automated synthesis of action selection policies for unmanned vehicles operating in adverse environments. Autonomous Robots 149-164, 2012.10.1007/s10514-011-9268-6
  10. 10. Goldberg D E.: Genetic Algorithms in Search, Optimization and Machine Learning. xiii(7): 2104–2116,1989.
  11. 11. Petres C, Yan P, Patron P, et al.: Path Planning for Autonomous Underwater Vehicles. IEEE Transactions on Robotics, 23(2):331-341, 2007.10.1109/TRO.2007.895057
  12. 12. Lavalle S M.: Rapidly-Exploring Random Trees: A New Tool for Path Planning. Algorithmic & Computational Robotics New Directions, 293-308, 1998.
  13. 13. Ge S, Cui Y J.: Dynamic Motion Planning for Mobile Robots Using Potential Field Method. Autonomous Robots, 13(3):207-222, 2002.10.1023/A:1020564024509
  14. 14. Andrews J R, Hogan N.: Impedance Control as a Framework for Implementing Obstacle Avoidance in a Manipulator. Control of Manufacturing Processes and Robotic Systems. 243-251,1983.
  15. 15. Zhu Y, Zhang T, Song J.: Study on the Local Minima Problem of Path Planning Using Potential Field Method in Unknown Environments. Acta Automatica Sinica, vol.36(8), pp:1122-1130, 2010.10.3724/SP.J.1004.2010.01122
  16. 16. Liu Y, Song R, Bucknall R. A practical path planning and navigation algorithm for an unmanned surface vehicle using the fast marching algorithm. Oceans. IEEE, 2015.10.1109/OCEANS-Genova.2015.7271338
  17. 17. Zhu Y, Zhang T, Song J.: Path planning for nonholonomic mobile robots using artificial potential field method. Control Theory & Applications, 27(2):152-158, 2010.
  18. 18. Kovács B, Szayer G, Tajti F, et al.: A novel potential field method for path planning of mobile robots by adapting animal motion attributes. Robotics & Autonomous Systems, 82(C):24-34, 2016.10.1016/j.robot.2016.04.007
  19. 19. Lee T H, Chung H, Myung H.: Multi-resolution path planning for marine surface vehicle considering environmental effects. Oceans. IEEE, 2011.10.1109/Oceans-Spain.2011.6003669
  20. 20. Garau B, Alvarez A, Oliver G.: Path Planning of Autonomous Underwater Vehicles in Current Fields with Complex Spatial Variability: an A* Approach, 2005.
  21. 21. Isern-González J, Hernández-Sosa D, Fernández-Perdomo E, et al.: Path planning for underwater gliders using iterative optimization. IEEE International Conference on Robotics and Automation, 1538-1543, 2011.10.1109/ICRA.2011.5980274
  22. 22. Soulignac M.: Feasible and Optimal Path Planning in Strong Current Fields. IEEE Transactions on Robotics, 27(1):89-98, 2011.10.1109/TRO.2010.2085790
  23. 23. Lee T, Kim H, Chung H, et al.: Energy efficient path planning for a marine surface vehicle considering heading angle. Ocean Engineering, 107:118-131, 2015.10.1016/j.oceaneng.2015.07.030
  24. 24. Song R, Liu Y, Bucknall R.: A multi-layered fast marching method for unmanned surface vehicle path planning in a time-variant maritime environment. Ocean Engineering, 129:301-317, 2017.10.1016/j.oceaneng.2016.11.009
  25. 25. Gong-Xing W U, Jin Z, Lei W, et al.: Design of the basic motion control system for water-jet-propelled unmanned surface vehicle. Control Theory & Applications, 27, 2010.
  26. 26. Yue J.: Study on Modeling and Simulation of 6-DOF Motion of Water-jet Propelled Unmanned Surface Vehicle. Dalian Maritime University, 17-60, 2016.
DOI: https://doi.org/10.2478/pomr-2019-0015 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 134 - 144
Published on: Apr 15, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Shasha Wang, Mingyu Fu, Yuanhui Wang, Liangbo Zhao, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.