Have a personal or library account? Click to login
Evaluation of pea (Pisum sativum L.) varieties for suitability in protein isolate production Cover

Evaluation of pea (Pisum sativum L.) varieties for suitability in protein isolate production

By: Aina Kokare and  Inga Sarenkova  
Open Access
|Sep 2025

References

  1. Arslan, M. (2017). Diversity for vitamin and amino acid content in grass pea (Lathyrus sativus L.). Legume Research, 40(5), 803–810. https://doi.org/0.18805/LR-369.
  2. Bastianelli, D., Grosjean, F., Peyronnet, C., Duparque, M., Régnier, J. M. (1998). Feeding value of pea (Pisum sativum, L.) Chemical composition of different categories of pea. Animal Science, 67(3), 609–619. https://doi.org/10.1017/S1357729800033051.
  3. Baxter, I. R., Ziegler, G., Lahner, B., Mickelbart, M. V., Foley, R., Danku, J., & Salt, D. E. (2014). Single-kernel ionomic profiles are highly heritable in maize. PLoS ONE, 9(1), e87628. https://doi.org/10.1371/journal.pone.0087628.
  4. Bestwick, M., Miller, P., Jones, C., & Olson-Rutz, K. (2018). Pea protein formation and management options [Technical report]. Montana State University. http://landresources.montana.edu/soilfertility/documents/PDF/reports/Bestwick2018PeaProtFormation.pdf
  5. Burstin, J., Salloignon, P., Chabert-Martinello, M., Magnin-Robert, J. B., Siol, M., Jacquin, F., Chauveau, A., Pont, C., Aubert, G., Delaitre, C., Truntzer, C., & Duc, G. (2015). Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genomics, 16, 105. https://doi.org/10.1186/s12864-015-1266-1.
  6. Chudasama, M., & Goyray, J. (2023). Chemical and techno-functional characterization of pea protein: A review. Technische Sicherheit, 23(11), 153-182.
  7. Ciurescu, G., Toncea, I., Ropotă, M., & Hăbeanu, M. (2018). Seeds composition and their nutrients quality of some pea (Pisum sativum L.) and lentil (Lens culinaris Medik.) cultivars. Romanian Agricultural Research, (35), 101–108. https://doi.org/0.59665/rar3514.
  8. Emkani, M., Moundanga, S., Oliete, B., & Saurel, R. (2023). Protein composition and nutritional aspects of pea protein fractions obtained by a modified isoelectric precipitation method using fermentation. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1284413.
  9. Gorissen, S. H. M., Crombag, J. J. R., Senden, J. M. G., Waterval, W. A. H., Bierau, J., Verdijk, L. B., & van Loon, L. J. C. (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids, 50(12), 1685–1695. https://doi.org/10.1007/s00726-018-2640-5.
  10. Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., & Maggio, R. M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology, 72, 83–90. https://doi.org/10.1016/j.tifs.2017.12.006.
  11. Gu, Z. (2014). Recovery of Recombinant Proteins from Plants Using Aqueous Two-Phase Partitioning Systems: An Outline. In: Labrou, N. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 1129. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-977-2_8
  12. Hansen, L., Bu, F., & Ismail, B. (2022). Structure-Function Guided Extraction and Scale-Up of Pea Protein Isolate Production. Foods, 11(23), 3773. https://doi.org/10.3390/foods11233773.
  13. Henriet, C., Aimé, D., Térézol, M., Kilandamoko, A., Rossin, N., Combes-Soia, L. & Gallardo, K. (2019). Water stress combined with sulfur deficiency in pea affects yield components but mitigates the effect of deficiency on seed globulin composition. Journal of Experimental Botany, 70(16), 4287-4304. https://doi.org/10.1093/jxb/erz114.
  14. Jha, A. B., Warkentin, T. D. (2020). Biofortification of pulse crops: Status and future perspectives. Plants, 9(1), 73. https://doi.org/10.3390/plants9010073.
  15. Karkanis, A., Ntatsi, G., Kontopoulou, C.-K., Pristeri, A., Bilalis, D., & Savvas, D. (2016). Field pea in european cropping systems: Adaptability, biological nitrogen fixation and cultivation practices. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(2), 325–336. https://doi.org/10.15835/NBHA44210618.
  16. Lam, A. C. Y., Can Karaca, A., Tyler, R. T., & Nickerson, M. T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34(2), 126–147. https://doi.org/10.1080/87559129.2016.1242135.
  17. Lam, A. C. Y., Warkentin, T. D., Tyler, R. T., & Nickerson, M. T. (2017). Physicochemical and functional properties of protein isolates obtained from several pea cultivars. Cereal Chemistry, 94(1), 89–97. https://doi.org/10.1094/CCHEM-04-16-0097-FI.
  18. Metsalu, T. & Vilo, J. (2015) ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(1), 566–570. https://doi.org/10.1093/nar/gkv468.
  19. Mohammed, Y.A., Chen, C., Walia, M.K., Torrion, J.A., McVay, K., Lamb, P. & Khan, Q. (2018). Dry pea (Pisum sativum L.) protein, starch, and ash concentrations as affected by cultivar and environment. Canadian Journal of Plant Science, 98(5), 1188–1198. https://doi.org/10.1139/cjps-2017-0338.
  20. Prudent, M., Vernoud, V., Girodet, S., & Salon, C. (2016). How nitrogen fixation is modulated in response to different water availability levels and during recovery: A structural and functional study at the whole plant level. Plant and Soil, 399, 1–12. https://doi.org/10.1007/s11104-015-2674-3.
  21. Shen, Y., Hong, S., & Li, Y. (2022). Pea protein composition, functionality, modification, and food applications: A review. Advances in Food and Nutrition Research, 101, 71–127. https://doi.org/10.1016/bs.afnr.2022.02.002.
  22. Taghvaei, M., Sadeghi, R., & Smith, B. (2022). Seed to seed variation of proteins of the yellow pea (Pisum sativum L.). PLOS ONE, 17(8), e0271887. https://doi.org/10.1371/journal.pone.0271887.
  23. Thavarajah, D., Lawrence, T., Boatwright, L., Johnson, N., Kay, J., Shipe, E. R., Kumar, S., & Thavarajah, P. (2023). Organic dry pea (Pisum sativum L.): A sustainable alternative pulse-based protein for human health. PLOS ONE, 18(4), e0284380. https://doi.org/10.1371/journal.pone.0284380.
  24. Tulbek, M., Wang, Y., & Hounjet, M. (2024). Pea—a sustainable vegetable protein crop. In Advances for a Healthier Tomorrow (pp. 143–162). Elsevier BV. https://doi.org/10.1016/b978-0-323-91652-3.00027-7.
  25. Tzitzikas, E. N., Vincken, J. P., de Groot, J., Gruppen, H., & Visser, R. G. (2006). Genetic variation in pea seed globulin composition. J Agric Food Chem, 54(2), 425-33. https://doi.org/10.1021/jf0519008.
  26. Walter, S., Zehring, J., Mink, K., Quendt, U., Zocher, K. & Rohn, S. (2022). Protein content of peas (Pisum sativum) and beans (Vicia faba)— Influence of cultivation conditions. Journal of Food Composition and Analysis, 105, 104257. https://doi.org/10.1016/j.jfca.2021.104257.
  27. World Health Organization, Food and Agriculture Organization of the United Nations, & United Nations University. (2007). Protein and amino acid requirements in human nutrition (WHO Technical Report Series, No. 935). World Health Organization.
  28. Wu, D.-T., Li, W.-X., Wan, J.-J., Hu, Y.-C., Gan, R.- Y., & Zou, L. (2023). A comprehensive review of pea (Pisum sativum L.): Chemical composition, processing, health benefits, and food applications. Foods, 12(13), 2527. https://doi.org/10.3390/foods12132527.
  29. Yanni, A. E., Iakovidi, S. I., Vasilikopoulou, E., & Karathanos, V. T. (2023). Legumes: A vehicle for transition to sustainability. Nutrients, 16(1). 98. https://doi.org/10.3390/nu16010098.
  30. Yuvaraj, M., Pandiyan, M., & Gayathri, P. (2020). Role of legumes in improving soil fertility status. Legume Crops - Prospects, Production and Uses. https://doi.org/10.5772/INTECHOPEN.93247.
Language: English
Page range: 67 - 76
Submitted on: Jun 20, 2025
|
Accepted on: Jul 31, 2025
|
Published on: Sep 1, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Aina Kokare, Inga Sarenkova, published by Latvia University of Life Sciences and Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.