Have a personal or library account? Click to login

The study of pea pre-treatment effect on pea-based beverage quality

Open Access
|Sep 2025

References

  1. Akkad, R., Buchko, A., Johnston, S. P., Han, J., House, J. D., & Curtis, J. M. (2021). Sprouting improves the flavour quality of faba bean flours. Food Chemistry, 364(November 2020), 130355. DOI: 10.1016/j.foodchem.2021.130355
  2. Azarnia, S., Boye, J. I., Warkentin, T., & Malcolmson, L. (2011). Changes in volatile flavour compounds in field pea cultivars as affected by storage conditions. International Journal of Food Science and Technology, 46(11), 2408–2419. DOI: 10.1111/j.1365-2621.2011.02764.x
  3. Bicurina, I. (2022). Quality assesment of pea drink. Master thesis, Latvia University of Life Sciences and Technologies, 57.
  4. Chen, S. K., Lin, H. F., Wang, X., Yuan, Y., Yin, J. Y., & Song, X. X. (2023). Comprehensive analysis in the nutritional composition, phenolic species and in vitro antioxidant activities of different pea cultivars. Food Chemistry: X, 17(June 2022), 100599. DOI: 10.1016/j.fochx.2023.100599
  5. Chen, Y. F., Zhang, M. W., Zhang, Y., Deng, Y. Y., Wei, Z. C., Tang, X. J., … Li, P. (2021). Effects of germination and extrusion on volatile flavor compounds in brown rice. Scientia Agricultura Sinica, 54(1), 190–202. DOI: 10.3864/j. issn.0578-1752.2021.01.014
  6. Cheng, Y., Xu, Q., Liu, J., Zhao, C., Xue, F., & Zhao, Y. (2014). Decomposition of five phenolic compounds in high temperature water. Journal of the Brazilian Chemical Society, 25(11), 2102–2107. DOI: 10.5935/0103-5053.20140201
  7. Cichońska, P., & Ziarno, M. (2022). Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of probiotics and prebiotics. Microorganisms, 10(1). DOI: 10.3390/microorganisms10010091
  8. Denkova, Z., Yanakieva, V., Denkova, R., Dobrev, I., & Kozludzhova, S. (2013). Examining the possibilities for application of pea milk in obtaining fermented probiotic foods. Scientific Papers of the University of Russia, 52(January), 8–13.
  9. Dhakal, D., Younas, T., Bhusal, R. P., Devkota, L., Henry, C. J., & Dhital, S. (2023). Design rules of plant-based yoghurt-mimic: Formulation, functionality, sensory profile and nutritional value. Food Hydrocolloids, 142(February), 108786. DOI: 10.1016/j.foodhyd.2023.108786
  10. Diaz-Bustamante, M. L., Keppler, J. K., Reyes, L. H., & Alvarez Solano, O. A. (2023). Trends and prospects in dairy protein replacement in yogurt and cheese. Heliyon, 9(6), e16974. DOI: 10.1016/j.heliyon.2023.e16974
  11. EL-Suhaibani, M., Ahmed, M. A., & Osman, M. A. (2020). Study of germination, soaking and cooking effects on the nutritional quality of goat pea (Securigera securidaca L.). Journal of King Saud University - Science, 32(3), 2029–2033. DOI: 10.1016/j.jksus.2020.02.021
  12. Gan, R. Y., Lui, W. Y., Wu, K., Chan, C. L., Dai, S. H., Sui, Z. Q., & Corke, H. (2017). Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science and Technology, 59, 1–14. DOI: 10.1016/j.tifs.2016.11.010
  13. Harmankaya, M., Musa Özcan, M., Karadaş, S., & Ceyhan, E. (2010). Protein and mineral content of pea P (Pisum sativum L.) Genotypes grown in Central Anatolian region of Turkey. South Western Journal, 1(2), 159–165. Retrieved from http://anucraiova.3x.ro/swjhbe/index.html2010
  14. Karolkowski, A., Guichard, E., Briand, L., & Salles, C. (2021). Volatile compounds in pulses: A review. Foods, 10(12), 1–27. DOI: 10.3390/foods10123140
  15. Kassegn, H. H., Atsbha, T. W., & Weldeabezgi, L. T. (2018). Effect of germination process on nutrients and phytochemicals contents of faba bean (Vicia faba L.) for weaning food preparation. Cogent Food and Agriculture, 4(1), 1–13. DOI: 10.1080/23311932.2018.1545738
  16. Kokare, A. (2022). Priekuļu pētniecības centrs Par ZM subsīdiju programmas Atbalsts selekcijas materiāla novērtēšanai integrēto un bioloģisko lauksaimniecības kultūraugu audzēšanas tehnoloģiju ieviešanai Lauka pupu selekcijas materiāla izvērtēšana.
  17. Kruma, Z., Tomsone, L., Ķince, T., Galoburda, R., Senhofa, S., Sabovics, M., … Sturite, I. (2016). Effects of germination on total phenolic compounds and radical scavenging activity in hull-less spring cereals and triticale. Agronomy Research, 14(SpecialIssue 2), 1372–1383.
  18. Megat Rusydi, M. R., & Azrina, A. (2012). Effect of germination on total phenolic, tannin and phytic acid contents in soy bean and peanut. International Food Research Journal, 19(2), 673–677.
  19. Mehle, H, Paravisini, L, Peterson, D. G. (2002). Impact of temperature and water activity on the aroma composition and flavor stability of pea (Pisum sativum) protein isolates during storage. Food & Function, 11(9), 8309–8319.
  20. Ojo, M. A. (2022). Tannins in Foods: Nutritional Implications and Processing Effects of Hydrothermal Techniques on Underutilized Hard-to-Cook Legume Seeds-A Review. Pre. Nutr. Food Science, 27(1), 14–19.
  21. Paśko, P., Bartoń, H., Zagrodzki, P., Gorinstein, S., Fołta, M., & Zachwieja, Z. (2009). Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry, 115(3), 994–998. DOI: 10.1016/j.foodchem.2009.01.037
  22. Pasqualone, A., Costantini, M., Coldea, T. E., & Summo, C. (2020). Use of Legumes in Extrusion Cooking: A Review. Foods, 9(7), 1–17. DOI: 10.3390/foods9070958
  23. Popova, A., & Mihaylova, D. (2019). Antinutrients in Plant-based Foods: A Review. The Open Biotechnology Journal, 13(1), 68–76. DOI: 10.2174/1874070701913010068
  24. Rakcejeva, T., Skudra, L., & Iljins, U. (2006). Biological value changes in wheat, rye and hullless barley grain during biological activation time. Latvijas Lauksaimniecibas Universitate -Raksti, 18(18), 25–33.
  25. Ranganathan J., Waite R., Searchinger T., Hanson C. (2018, December). How to Sustainably Feed 10 Billion People by 2050, in 21 Charts, Retrieved April 10, 2025, from: https://www.wri.org/insights/how-sustainably-feed-10-billion-people-2050-21-charts.
  26. Roland, W. S. U., Pouvreau, L., Curran, J., Van De Velde, F., & De Kok, P. M. T. (2017). Flavor aspects of pulse ingredients. Cereal Chemistry, 94(1), 58–65. DOI: 10.1094/CCHEM-06-16-0161-FI
  27. Roosta, F., & Hematian Sourki, A. (2024). Techno-functional, physicochemical and thermal characteristics of black chickpeas aquafaba under ultrasound pre-processing. Heliyon, 10(22). DOI: 10.1016/j.heliyon.2024.e40149
  28. Sedó Molina, G. E., Ras, G., Barone, G., Fernández-Varela, R., Felix da Silva, D., Jacobsen, C., … Heiner Bang-Berthelsen, C. (2024). Multiphasic and mixture lactic acid bacteria screening approach for the removal of antinutrients and off-flavors present in a pea, oat and potato blend. Food Research International, 197(September). DOI: 10.1016/j.foodres.2024.115200
  29. Senanayake, D., Torley, P. J., Chandrapala, J., & Terefe, N. S. (2023). Microbial Fermentation for Improving the Sensory, Nutritional and Functional Attributes of Legumes. Fermentation, 9(7). DOI: 10.3390/fermentation9070635
  30. Sethi, S., Tyagi, S. K., & Anurag, R. K. (2016). Plant-based milk alternatives an emerging segment of functional beverages: a review. Journal of Food Science and Technology, 53(9), 3408–3423. DOI: 10.1007/s13197-016-2328-3
  31. Sharma, S., Saxena, D. C., & Riar, C. S. (2016). Analysing the effect of germination on phenolics, dietary fibres, minerals and γ-amino butyric acid contents of barnyard millet (Echinochloa frumentaceae). Food Bioscience, 13(May 2018), 60–68. DOI: 10.1016/j.fbio.2015.12.007
  32. Shi, Y., Singh, A., Kitts, D. D., & Pratap-Singh, A. (2021). Lactic acid fermentation: A novel approach to eliminate unpleasant aroma in pea protein isolates. Lwt, 150(March), 111927. DOI: 10.1016/j.lwt.2021.111927
  33. Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International, 101(June), 1–16. DOI: 10.1016/j. foodres.2017.09.026
  34. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.
  35. Tarasevičienė, Ž., Viršilė, A., Danilčenko, H., Duchovskis, P., Paulauskienė, A., & Gajewski, M. (2019). Effects of Germination Time on the Antioxidant Properties of Edible Seeds. CYTA - Journal of Food, 17(1), 447–454. DOI: 10.1080/19476337.2018.1553895
  36. Trindler, C., Annika Kopf-Bolanz, K., & Denkel, C. (2022). Aroma of peas, its constituents and reduction strategies – Effects from breeding to processing. Food Chemistry, 376(December 2021). DOI: 10.1016/j.foodchem.2021.131892
  37. Troszyńska, A., & Ciska, E. (2002). Phenolic compounds of seed coats of white and coloured varieties of pea (Pisum sativum L.) and their total antioxidant activity. Czech Journal of Food Sciences, 20(1), 15–22. DOI: 10.17221/3504-cjfs
  38. Tshovhote, N. J., Nesamvuni, A. E., Raphulu, T., & Gous, R. M. (2003). The chemical composition, energy and amino acid digestibility of cowpeas used in poultry nutrition. South African Journal of Animal Science, 33(1), 65–69. DOI: 10.4314/sajas.v33i1.3739
  39. Tulbek, M. C., Lam, R. S. H., Wang, Y. C., Asavajaru, P., & Lam, A. (2017). Pea: A Sustainable Vegetable Protein Crop. Sustainable Protein Sources, 145–164. DOI: 10.1016/B978-0-12-802778-3.00009-3
  40. Vara-Ubol, S., Chambers, E., Chambers, D. H. (2004). Sensory Characteristics of Chemical Compounds Potentially Associated wtih Beany Aroma in Foods. Journal of Sensory Studies, 19, 15–26. Wei, X., Wanasundara, J. P. D., & Shand, P. (2022).
  41. Short-term germination of faba bean (Vicia faba L.) and the effect on selected chemical constituents. Applied Food Research, 2(1), 100030. DOI: 10.1016/j.afres.2021.100030
  42. Xing, Y., Ma, J., Yao, Q., Chen, X., Zang, J., & Zhao, G. (2022). The Change in the Structure and Functionality of Ferritin during the Production of Pea Seed Milk. Foods, 11(4). DOI: 10.3390/foods11040557
  43. Zhang, K., Zhang, C., Zhuang, H., Liu, Y., Feng, T., & Nie, B. (2021). Characterization of Volatile Component Changes in Peas under Different Treatments by GC-IMS and GC-MS. Journal of Food Quality, 2021. DOI: 10.1155/2021/6533083
  44. Zink, J. I., Zehnder-Wyss, O., Dällenbach, D., Nyström, L., & Windhab, E. J. (2024). Enzymatic degradation of pea fibers changes pea protein concentrate functionality. Current Research in Food Science, 8(April). DOI: 10.1016/j. crfs.2024.100744
Language: English
Page range: 30 - 41
Submitted on: Jun 18, 2025
Accepted on: Jul 31, 2025
Published on: Sep 1, 2025
Published by: Latvia University of Life Sciences and Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Jelena Zagorska, Irena Bicurina, Zanda Kruma, Inga Ciprovica, Aina Kokare, Jana Feldmane, published by Latvia University of Life Sciences and Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.