Have a personal or library account? Click to login
Theoretical and Experimental Investigation of the Thermal Inactivation of Thermoanaerobacterium Thermosaccharolyticum and Geobacillus Stearothermophilus in Different Canned Food Matrices Cover

Theoretical and Experimental Investigation of the Thermal Inactivation of Thermoanaerobacterium Thermosaccharolyticum and Geobacillus Stearothermophilus in Different Canned Food Matrices

Open Access
|Dec 2021

References

  1. Ababouch, L. (2014). Heat treatment of foods: Spoilage problems associated with canning. Encyclopedia of Food Microbiology: 2nd ed., 2, 175–180. <a href="https://doi.org/10.1016/B978-0-12-384730-0.00157-910.1016/B978-0-12-384730-0.00157-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-384730-0.00157-910.1016/B978-0-12-384730-0.00157-9</a>
  2. Ahn, J., Balasubramaniam, V. M., & Yousef, A. E. (2007). Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. International Journal of Food Microbiology, 113, 321–329. <a href="https://doi.org/10.1016/j.ijfoodmicro.2006.08.01210.1016/j.ijfoodmicro.2006.08.01217196696" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijfoodmicro.2006.08.01210.1016/j.ijfoodmicro.2006.08.01217196696</a>
  3. André, S., Zuber, F., & Remize, F. (2013). Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French tenyear survey. International Journal of Food Microbiology, 165, 134–143. <a href="https://doi.org/10.1016/j.ijfoodmicro.2013.04.01910.1016/j.ijfoodmicro.2013.04.01923728430" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijfoodmicro.2013.04.01910.1016/j.ijfoodmicro.2013.04.01923728430</a>
  4. André, S., Charton, A., Pons, A., Vannier, C., & Couvert, O. (2021). Viability of bacterial spores surviving heat-treatment is lost by further incubation at temperature and pH not suitable for growth. Food Microbiology, 95, 103690. <a href="https://doi.org/10.1016/j.fm.2020.10369010.1016/j.fm.2020.10369033397631" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fm.2020.10369010.1016/j.fm.2020.10369033397631</a>
  5. André, S., Vallaeys, T., & Planchon, S. (2017). Spore-forming bacteria responsible for food spoilage. Research in Microbiology, 168, 379–387. <a href="https://doi.org/10.1016/j.resmic.2016.10.00310.1016/j.resmic.2016.10.00327989764" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.resmic.2016.10.00310.1016/j.resmic.2016.10.00327989764</a>
  6. Bratt, L. (2013). Technical guide to fish canning. FAO GLOBEFISH Research Programme, 111, 1–69.
  7. Bigelow, W. D., Bohart, G. S., Richardson, A. C., & Ball, C. O. (1920). Heat penetration in processing canned foods. Bulletin No. 16L. National Canners Association.
  8. Byrer, D. E., Rainey, F. A., & Wiegel, J. (2000). Novel strains of Moorella thermoacetica form unusually heatresistant spores. Archives of Microbiology, 174, 334–339. <a href="https://doi.org/10.1007/s00203000021110.1007/s00203000021111131023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00203000021110.1007/s00203000021111131023</a>
  9. Cameron, M. S., Leonard, S. J., & Barrett, E. L. (1980). Effect of moderately acidic pH on heat resistance of Clostridium sporogenes spores in phosphate buffer and in buffered pea puree. Applied and Environmental Microbiology, 39, 943–949. <a href="https://doi.org/10.1128/AEM.39.5.943-949.198010.1128/aem.39.5.943-949.19802914567396485" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AEM.39.5.943-949.198010.1128/aem.39.5.943-949.19802914567396485</a>
  10. da Silva, N., Taniwaki, M. H., Junqueira, V. C. A., Silveira, N., Okazaki, M. M., & Gomes, R. A. R. (2018). Microbiological Examination Methods of Food and Water: A Laboratory Manual: 2nd ed. CRC Press LLC.<a href="https://doi.org/10.1201/9781315165011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1201/9781315165011</a>
  11. Delves-Broughton, J. (2008). Use of the natural food preservatives, nisin and natamycin, to reduce detrimental thermal impact on product quality. In-Pack Processed Foods: Improving Quality. Woodhead Publishing Limited. <a href="https://doi.org/10.1533/9781845694692.4.31910.1533/9781845694692.4.319" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1533/9781845694692.4.31910.1533/9781845694692.4.319</a>
  12. Durand, L., Planchon, S., Guinebretiere, M. H., Carlin, F., & Remize, F. (2015). Genotypic and phenotypic characterization of foodborne Geobacillus stearothermophilus. Food Microbiology, 45, 103–110. doi:<a href="https://doi.org/10.1016/j.fm.2014.01.01510.1016/j.fm.2014.01.01525481066" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.fm.2014.01.01510.1016/j.fm.2014.01.01525481066</a>
  13. FDA (2020). Code of federal regulations Title 21, 114, 3. Retrieved from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=114.3
  14. Janštová, B., & Lukášová, J. (2001). Heat resistance of Bacillus spp. spores isolated from cow’s milk and farm environment. Acta Veterinaria Brno, 70, 179–184. <a href="https://doi.org/10.2754/avb20017002017910.2754/avb200170020179" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2754/avb20017002017910.2754/avb200170020179</a>
  15. Jay, M. J., Loessner, J. M., & Golden, D. A. (2005). Modern Food Microbiology: 7th ed. Springer. doi:<a href="https://doi.org/10.1007/b10084010.1007/b100840" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/b10084010.1007/b100840</a>
  16. Kirse-Ozolina, A., Muizniece-Brasava, S., Raits, E., Kruma, Z. (2019). Effect of sterilization parameters on the quality of commercially-prepared instant soups. Engineering for rural development, 22.-24.05.2019. (695-704). Latvia, Jelgava: Latvia University of Life Sciences and Technologies.
  17. Kotzekidou, P. (2014). Bacillus: Geobacillus stearothermophilus (formerly Bacillus stearothermophilus). Encyclopedia of Food Microbiology: 2nd ed. Elsevier. <a href="https://doi.org/10.1016/B978-0-12-384730-0.00020-310.1016/B978-0-12-384730-0.00020-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-384730-0.00020-310.1016/B978-0-12-384730-0.00020-3</a>
  18. López, M., González, I., Mazas, M., González, J., Martin, R., & Bernardo, A. (1997). Influence of recovery conditions on apparent heat resistance of Bacillus stearothermophilus spores. International Journal of Food Science and Technology, 32, 305–311. <a href="https://doi.org/10.1046/j.1365-2621.1997.00115.x10.1046/j.1365-2621.1997.00115.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1046/j.1365-2621.1997.00115.x10.1046/j.1365-2621.1997.00115.x</a>
  19. Mtimet, N., Guégan, S., Durand, L., Mathot, A. G., Venaille, L., Leguérinel, I., … Couvert, O. (2016). Effect of pH on Thermoanaerobacterium thermosaccharolyticum DSM 571 growth, spore heat resistance and recovery. Food Microbiology, 55, 64–72. <a href="https://doi.org/10.1016/j.fm.2015.11.01510.1016/j.fm.2015.11.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fm.2015.11.01510.1016/j.fm.2015.11.015</a>
  20. Mtimet, N., Trunet, C., Mathot, A. G., Venaille, L., Leguérinel, I., Coroller, L., & Couvert, O. (2015). Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries. Food Microbiology, 48, 153–162. <a href="https://doi.org/10.1016/j.fm.2014.10.01310.1016/j.fm.2014.10.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fm.2014.10.01310.1016/j.fm.2014.10.013</a>
  21. Palop, A., Raso, J., Pagán, R., Condón, S., & Sala, F. J. (1999). Influence of pH on heat resistance of spores of Bacillus coagulans in buffer and homogenized foods. International Journal of Food Microbiology, 46, 243–249. <a href="https://doi.org/10.1016/S0168-1605(98)00199-810.1016/S0168-1605(98)00199-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0168-1605(98)00199-810.1016/S0168-1605(98)00199-8</a>
  22. Peng, J., Mah, J. H., Somavat, R., Mohamed, H., Sastry, S., & Tang, J. (2012). Thermal inactivation kinetics of Bacillus coagulans spores in tomato juice. Journal of Food Protection, 75, 1236–1242. <a href="https://doi.org/10.4315/0362-028X.JFP-11-49010.4315/0362-028X.JFP-11-49022980006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4315/0362-028X.JFP-11-49010.4315/0362-028X.JFP-11-49022980006</a>
  23. Rigaux, C., Denis, J. B., Albert, I., & Carlin, F. (2013). A meta-analysis accounting for sources of variability to estimate heat resistance reference parameters of bacteria using hierarchical Bayesian modeling: Estimation of D at 121.1 °C and pH 7, zT and zpH of Geobacillus stearothermophilus. International Journal of Food Microbiology, 161, 112–120. <a href="https://doi.org/10.1016/j.ijfoodmicro.2012.12.00110.1016/j.ijfoodmicro.2012.12.00123279820" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijfoodmicro.2012.12.00110.1016/j.ijfoodmicro.2012.12.00123279820</a>
  24. Somavat, R., Mohamed, H. M. H., Chung, Y. K., Yousef, A. E., & Sastry, S. K. (2012). Accelerated inactivation of Geobacillus stearothermophilus spores by ohmic heating. Journal of Food Engineering, 108, 69–76. <a href="https://doi.org/10.1016/j.jfoodeng.2011.07.02810.1016/j.jfoodeng.2011.07.028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jfoodeng.2011.07.02810.1016/j.jfoodeng.2011.07.028</a>
  25. Teixeira, A. (2006). Simulating Thermal Food Processes Using Deterministic Models. In: Thermal Food Processing, New Technologies and Quality Issues. CRC Press LLC.
  26. Warne, D. (1988). Manual on Fish Canning. Rome: FAO
Language: English
Page range: 97 - 104
Submitted on: Jun 30, 2021
Accepted on: Nov 8, 2021
Published on: Dec 22, 2021
Published by: Latvia University of Life Sciences and Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Evalds Raits, Svetlana Raita, Asnate Kirse-Ozolina, Sandra Muizniece-Brasava, published by Latvia University of Life Sciences and Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.