References
- 1. Roeske JC, Nunez L, Hoggarth M, Labay E, Weichselbaum RR. Characterization of the theoretical radiation dose enhancement from nanoparticles. Technol Cancer Res Treat. 2007;6(5):395-401. https://doi.org/10.1177/15330346070060050410.1177/15330346070060050417877427
- 2. Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2013;2(4):330-42.
- 3. Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based Nano Enhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics. 2018;8(7):1824-1849. https://doi.org/10.7150/thno.2217210.7150/thno.22172585850329556359
- 4. Kuncic Z, Lacombe S. Nanoparticle radio enhancement: principles, progress, and application to cancer treatment. Phys Med Biol. 2018;63(2):02TR01. https://doi.org/10.1088/1361-6560/aa99ce10.1088/1361-6560/aa99ce29125831
- 5. Mehrnia SS, Hashemi B, Mowla SJ, Arbabi A. Enhancing the effect of 4MeV electron beam using gold nanoparticles in breast cancer cells. Phys Med. 2017;35:18-24. https://doi.org/10.1016/j.ejmp.2017.02.01410.1016/j.ejmp.2017.02.01428285936
- 6. Peukert D, Kempson I, Douglass M, Bezak E. Metallic nanoparticle radio sensitization of ion radiotherapy: A review. Phys Med. 2018;47:121-128. https://doi.org/10.1016/j.ejmp.2018.03.00410.1016/j.ejmp.2018.03.00429609813
- 7. Stewart C, Konstantinov K, McKinnon S, Guatelli S, Lerch M, Rosenfeld A, Tehei M, Corde S. First proof of bismuth oxide nanoparticles as efficient radiosensitizers on highly radioresistant cancer cells. Phys Med. 2016;32(11):1444-1452. https://doi.org/10.1016/j.ejmp.2016.10.01510.1016/j.ejmp.2016.10.01528327297
- 8. Ghorbani M, Salahshour F, Haghparast A, Moghaddas TA, Knaup C. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources. J Contemp Brachytherapy. 2014;6(1):54-67. https://doi.org/10.5114/jcb.2014.4202410.5114/jcb.2014.42024400343124790623
- 9. Manohara SR, Hanagodimath SM, Gerward L. Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics. J Appl Clin Med Phys. 2011;12(4):3557. https://doi.org/10.1120/jacmp.v12i4.355710.1120/jacmp.v12i4.3557571874722089011
- 10. Kurudirek M. Effective atomic number of soft tissue, water and air for interaction of various hadrons, leptons and isotopes of hydrogen. Int J Radiat Biol. 2017;93(12):1299-1305. https://doi.org/10.1080/09553002.2018.138854610.1080/09553002.2018.138854628978247
- 11. Kurudirek M, Özdemir Y. Energy absorption and exposure buildup factors for some polymers and tissue substitute materials: photon energy, penetration depth and chemical composition dependence. J Radiol Prot. 2011;31(1):117-28. https://doi.org/10.1088/0952-4746/31/1/00810.1088/0952-4746/31/1/00821346285
- 12. Sayyed MI, Elhouichet H. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses. Radiat. Phys. Chem 2017:130;335-342. https://doi.org/10.1016/j.radphyschem.2016.09.01910.1016/j.radphyschem.2016.09.019
- 13. Sathiyaraj P, Samuel EJJ, Valeriano CCS, Kurudirek M. Effective atomic number and buildup factor calculations for metal nano particle doped polymer gel. Vacuum 2017:143;138-149. https://doi.org/10.1016/j.vacuum.2017.06.00510.1016/j.vacuum.2017.06.005
- 14. Saleh HH, Sharaf JM, Alkhateeb SB, Hamideen MS. Studies on equivalent atomic number and photon buildup factors for some tissues and phantom materials. Radiat. Phys. Chem. 2019:165;108388. https://doi.org/10.1016/j.radphyschem.2019.10838810.1016/j.radphyschem.2019.108388
- 15. Manjunatha HC, Rudraswamy B. Computation of exposure buildup factors in teeth. Radiation Physics and Chemistry. 2011;80(1):14-21. https://doi.org/10.1016/j.radphyschem.2010.09.00410.1016/j.radphyschem.2010.09.004
- 16. Berger M, Hubbell J, Seltzer S, Chang J, Coursey J, Sukumar R, Zucker D, Olsen K. XCOM: Photon Cross Sections Database (NIST). 2010
- 17. Berger MJ, Coursey JS, Zucker MA, Chang J. Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions. NISTIR 4999, 2017:1-17. https://doi.org/10.18434/T4NC7P
- 18. Farahani S, Riyahi Alam N, Haghgoo S, Shirazi A, Geraily G, Gorji E, Kavousi N. The effect of bismuth nanoparticles in kilovoltage and megavoltage radiation therapy using magnetic resonance imaging polymer gel dosimetry. Radiat. Phys. Chem. 2020;170:108573. https://doi.org/10.1016/j.radphyschem.2019.10857310.1016/j.radphyschem.2019.108573
- 19. Kurudirek M, Aksakal O, Akkuş T. Investigation of the effective atomic numbers of dosimetric materials for electrons, protons and alpha particles using a direct method in the energy region 10 keV-1 GeV: a comparative study. Radiat. Environ. Biophys. 2015;54, 481-492. https://doi.org/10.1007/s00411-015-0606-510.1007/s00411-015-0606-526082026
- 20. Kurudirek M, Onaran T. Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and carbon ion. Radiat. Phys. Chem. 2015;112:125-138. https://doi.org/10.1016/j.radphyschem.2015.03.03410.1016/j.radphyschem.2015.03.034
- 21. Manohara SR, Hanagodimath SM, Thind KS, Gerward L. On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 2008:266, 3906-3912. https://doi.org/10.1016/j.nimb.2008.06.03410.1016/j.nimb.2008.06.034
- 22 Özpolat ÖF, Alım B, Şakar E, Büyükyıldız M, Kurudirek M. Phy-X/ZeXTRa: a software for robust calculation of effective atomic numbers for photon, electron, proton, alpha particle, and carbon ion interactions. Radiat. Environ. Biophys. 2020;59:321-329. https://doi.org/https://doi.org/10.1007/s00411-019-00829-710.1007/s00411-019-00829-731960126
- 23. Jarrah I, Radaideh MI, Kozlowski T, Rizwan-uddin. Determination and validation of photon energy absorption buildup factor in human tissues using Monte Carlo simulation. Radiat. Phys. Chem. 2019;160:15-25. https://doi.org/10.1016/j.radphyschem.2019.03.00810.1016/j.radphyschem.2019.03.008
- 24. Şakar E, Özpolat ÖFm Alım B, Sayyed MI, Kurudirek M. Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020;166:108496. https://doi.org/10.1016/j.radphyschem.2019.10849610.1016/j.radphyschem.2019.108496
- 25. Taylor ML, Smith RL, Dossing F, Franich RD. Robust calculation of effective atomic numbers: The Auto-Zeff software. Med. Phys. 2012;37:1769-1778. https://doi.org/10.1118/1.368981010.1118/1.368981022482600
- 26. Kurudirek M. Effective atomic numbers, water and tissue equivalence properties of human tissues, tissue equivalents and dosimetric materials for total electron interaction in the energy region 10 keV-1 GeV. App. Radiat. Isot. 2014;94:1-7. https://doi.org/10.1016/j.apradiso.2014.07.00210.1016/j.apradiso.2014.07.00225061891
- 27. Salehi D, Sardari D, Jozani MS. Investigation of some radiation shielding parameters in soft tissue. J. Radiat. Res. Appl. Sci. 2015:8(3):439-445. https://doi.org/10.1016/j.jrras.2015.03.00410.1016/j.jrras.2015.03.004
- 28. Singh VP, Badiger NM. Effective atomic numbers of some tissue substitutes by different methods: A comparative study. J.Med.Phy. 2014:39;24-31. https://doi.org/10.4103/0971-6203.12548910.4103/0971-6203.125489393122424600169
- 29. Sisin NNT, Abdul Razak K, Zainal Abidin S, et al. Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for high Dose Rate Brachytherapy. Int. J. Nanomedicine. 2019;14:9941-9954. https://doi.org/10.2147/IJN.S22891910.2147/IJN.S228919692722931908451