Have a personal or library account? Click to login
Effective atomic number and photon buildup factor of bismuth doped tissue for photon and particles beam interaction Cover

Effective atomic number and photon buildup factor of bismuth doped tissue for photon and particles beam interaction

Open Access
|Mar 2022

References

  1. 1. Roeske JC, Nunez L, Hoggarth M, Labay E, Weichselbaum RR. Characterization of the theoretical radiation dose enhancement from nanoparticles. Technol Cancer Res Treat. 2007;6(5):395-401. https://doi.org/10.1177/15330346070060050410.1177/15330346070060050417877427
  2. 2. Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2013;2(4):330-42.
  3. 3. Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based Nano Enhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics. 2018;8(7):1824-1849. https://doi.org/10.7150/thno.2217210.7150/thno.22172585850329556359
  4. 4. Kuncic Z, Lacombe S. Nanoparticle radio enhancement: principles, progress, and application to cancer treatment. Phys Med Biol. 2018;63(2):02TR01. https://doi.org/10.1088/1361-6560/aa99ce10.1088/1361-6560/aa99ce29125831
  5. 5. Mehrnia SS, Hashemi B, Mowla SJ, Arbabi A. Enhancing the effect of 4MeV electron beam using gold nanoparticles in breast cancer cells. Phys Med. 2017;35:18-24. https://doi.org/10.1016/j.ejmp.2017.02.01410.1016/j.ejmp.2017.02.01428285936
  6. 6. Peukert D, Kempson I, Douglass M, Bezak E. Metallic nanoparticle radio sensitization of ion radiotherapy: A review. Phys Med. 2018;47:121-128. https://doi.org/10.1016/j.ejmp.2018.03.00410.1016/j.ejmp.2018.03.00429609813
  7. 7. Stewart C, Konstantinov K, McKinnon S, Guatelli S, Lerch M, Rosenfeld A, Tehei M, Corde S. First proof of bismuth oxide nanoparticles as efficient radiosensitizers on highly radioresistant cancer cells. Phys Med. 2016;32(11):1444-1452. https://doi.org/10.1016/j.ejmp.2016.10.01510.1016/j.ejmp.2016.10.01528327297
  8. 8. Ghorbani M, Salahshour F, Haghparast A, Moghaddas TA, Knaup C. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources. J Contemp Brachytherapy. 2014;6(1):54-67. https://doi.org/10.5114/jcb.2014.4202410.5114/jcb.2014.42024400343124790623
  9. 9. Manohara SR, Hanagodimath SM, Gerward L. Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics. J Appl Clin Med Phys. 2011;12(4):3557. https://doi.org/10.1120/jacmp.v12i4.355710.1120/jacmp.v12i4.3557571874722089011
  10. 10. Kurudirek M. Effective atomic number of soft tissue, water and air for interaction of various hadrons, leptons and isotopes of hydrogen. Int J Radiat Biol. 2017;93(12):1299-1305. https://doi.org/10.1080/09553002.2018.138854610.1080/09553002.2018.138854628978247
  11. 11. Kurudirek M, Özdemir Y. Energy absorption and exposure buildup factors for some polymers and tissue substitute materials: photon energy, penetration depth and chemical composition dependence. J Radiol Prot. 2011;31(1):117-28. https://doi.org/10.1088/0952-4746/31/1/00810.1088/0952-4746/31/1/00821346285
  12. 12. Sayyed MI, Elhouichet H. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses. Radiat. Phys. Chem 2017:130;335-342. https://doi.org/10.1016/j.radphyschem.2016.09.01910.1016/j.radphyschem.2016.09.019
  13. 13. Sathiyaraj P, Samuel EJJ, Valeriano CCS, Kurudirek M. Effective atomic number and buildup factor calculations for metal nano particle doped polymer gel. Vacuum 2017:143;138-149. https://doi.org/10.1016/j.vacuum.2017.06.00510.1016/j.vacuum.2017.06.005
  14. 14. Saleh HH, Sharaf JM, Alkhateeb SB, Hamideen MS. Studies on equivalent atomic number and photon buildup factors for some tissues and phantom materials. Radiat. Phys. Chem. 2019:165;108388. https://doi.org/10.1016/j.radphyschem.2019.10838810.1016/j.radphyschem.2019.108388
  15. 15. Manjunatha HC, Rudraswamy B. Computation of exposure buildup factors in teeth. Radiation Physics and Chemistry. 2011;80(1):14-21. https://doi.org/10.1016/j.radphyschem.2010.09.00410.1016/j.radphyschem.2010.09.004
  16. 16. Berger M, Hubbell J, Seltzer S, Chang J, Coursey J, Sukumar R, Zucker D, Olsen K. XCOM: Photon Cross Sections Database (NIST). 2010
  17. 17. Berger MJ, Coursey JS, Zucker MA, Chang J. Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions. NISTIR 4999, 2017:1-17. https://doi.org/10.18434/T4NC7P
  18. 18. Farahani S, Riyahi Alam N, Haghgoo S, Shirazi A, Geraily G, Gorji E, Kavousi N. The effect of bismuth nanoparticles in kilovoltage and megavoltage radiation therapy using magnetic resonance imaging polymer gel dosimetry. Radiat. Phys. Chem. 2020;170:108573. https://doi.org/10.1016/j.radphyschem.2019.10857310.1016/j.radphyschem.2019.108573
  19. 19. Kurudirek M, Aksakal O, Akkuş T. Investigation of the effective atomic numbers of dosimetric materials for electrons, protons and alpha particles using a direct method in the energy region 10 keV-1 GeV: a comparative study. Radiat. Environ. Biophys. 2015;54, 481-492. https://doi.org/10.1007/s00411-015-0606-510.1007/s00411-015-0606-526082026
  20. 20. Kurudirek M, Onaran T. Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and carbon ion. Radiat. Phys. Chem. 2015;112:125-138. https://doi.org/10.1016/j.radphyschem.2015.03.03410.1016/j.radphyschem.2015.03.034
  21. 21. Manohara SR, Hanagodimath SM, Thind KS, Gerward L. On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 2008:266, 3906-3912. https://doi.org/10.1016/j.nimb.2008.06.03410.1016/j.nimb.2008.06.034
  22. 22 Özpolat ÖF, Alım B, Şakar E, Büyükyıldız M, Kurudirek M. Phy-X/ZeXTRa: a software for robust calculation of effective atomic numbers for photon, electron, proton, alpha particle, and carbon ion interactions. Radiat. Environ. Biophys. 2020;59:321-329. https://doi.org/https://doi.org/10.1007/s00411-019-00829-710.1007/s00411-019-00829-731960126
  23. 23. Jarrah I, Radaideh MI, Kozlowski T, Rizwan-uddin. Determination and validation of photon energy absorption buildup factor in human tissues using Monte Carlo simulation. Radiat. Phys. Chem. 2019;160:15-25. https://doi.org/10.1016/j.radphyschem.2019.03.00810.1016/j.radphyschem.2019.03.008
  24. 24. Şakar E, Özpolat ÖFm Alım B, Sayyed MI, Kurudirek M. Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020;166:108496. https://doi.org/10.1016/j.radphyschem.2019.10849610.1016/j.radphyschem.2019.108496
  25. 25. Taylor ML, Smith RL, Dossing F, Franich RD. Robust calculation of effective atomic numbers: The Auto-Zeff software. Med. Phys. 2012;37:1769-1778. https://doi.org/10.1118/1.368981010.1118/1.368981022482600
  26. 26. Kurudirek M. Effective atomic numbers, water and tissue equivalence properties of human tissues, tissue equivalents and dosimetric materials for total electron interaction in the energy region 10 keV-1 GeV. App. Radiat. Isot. 2014;94:1-7. https://doi.org/10.1016/j.apradiso.2014.07.00210.1016/j.apradiso.2014.07.00225061891
  27. 27. Salehi D, Sardari D, Jozani MS. Investigation of some radiation shielding parameters in soft tissue. J. Radiat. Res. Appl. Sci. 2015:8(3):439-445. https://doi.org/10.1016/j.jrras.2015.03.00410.1016/j.jrras.2015.03.004
  28. 28. Singh VP, Badiger NM. Effective atomic numbers of some tissue substitutes by different methods: A comparative study. J.Med.Phy. 2014:39;24-31. https://doi.org/10.4103/0971-6203.12548910.4103/0971-6203.125489393122424600169
  29. 29. Sisin NNT, Abdul Razak K, Zainal Abidin S, et al. Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for high Dose Rate Brachytherapy. Int. J. Nanomedicine. 2019;14:9941-9954. https://doi.org/10.2147/IJN.S22891910.2147/IJN.S228919692722931908451
DOI: https://doi.org/10.2478/pjmpe-2022-0005 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 37 - 51
Submitted on: May 14, 2021
Accepted on: Dec 12, 2021
Published on: Mar 29, 2022
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 K Srinivasan, E James Jabaseelan Samuel, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.