Have a personal or library account? Click to login
Sodium Metasilicate-MgO Blend Catalyst for Producing Mono and Diacylglycerol from Palm Kernel Oil Using High Shear Compartment Reactor Cover

Sodium Metasilicate-MgO Blend Catalyst for Producing Mono and Diacylglycerol from Palm Kernel Oil Using High Shear Compartment Reactor

Open Access
|Dec 2024

References

  1. Alvarez Serafini, M.S. & Tonetto, G.M. (2019). Catalytic Synthesis of Monoglycerides by Glycerolysis of Triglycerides. Internat. J. Chem. Reactor Engin. 17(11). DOI: 10.1515/ijcre-2019-0056.
  2. Buchori, L., Anggoro, D.D., Sumantri, I. & Putra, R.R.R. (2019). Optimization of monoglycerides production using KF/CaO-MgO heterogeneous catalysis. Bull. Chemical Reaction Engin. Catalysis. 14(3), 689–696. DOI: 10.9767/bcrec.14.3.4251.689-696.
  3. Zha, B., Chen, Z., Wang, L., Wang, R., Chen, Z. & Zheng, L. (2014). Production of glycerol monolaurate-enriched monoacylglycerols by lipase-catalyzed glycerolysis from coconut oil. Europ. J. Lipid Sci. Technol. 116(3), 328–335. DOI: 10.1002/ejlt.201300243.
  4. Vilas Bôas, R.N., Lima, R., Silva, M.V.C., Freitas, L., Aguiar, L.G. & de Castro, H.F. (2021). Continuous production of monoacylglycerol via glycerolysis of babassu oil by immobilized Burkholderia cepacia lipase in a packed bed reactor. Bioproc. Biosyst. Eng. 44(10), 2205–2215. DOI: 10.1007/s00449-021-02596-6.
  5. Arum, A., Hidayat, C. & Supriyanto. (2019). Synthesis of Emulsifier from Refined Bleached Deodorized Palm Stearin by Chemical Glycerolysis in Stirred Tank Reactor. KnE Life Sci. 4(11), 130. DOI: 10.18502/kls.v4i11.3859.
  6. Cerro-Alarcón, M., Corma, A., Iborra, S., Martínez, C. & Sabater, M.J. (2010). Methanolysis of sunflower oil using gem-diamines as active organocatalysts for biodiesel production. Appl. Catal. A Gen. 382(1), 36–42. DOI: 10.1016/j.apcata.2010.04.024.
  7. Laskar, I.B., Changmai, B., Gupta, R., Shi, D., Jenkinson, K.J., Wheatley, A.E.H. & Rokhum, S.L. (2021). A mesoporous polysulfonic acid-formaldehyde polymeric catalyst for biodiesel production from Jatropha curcas oil. Renew Energy. 173, 415–421. DOI: 10.1016/j.renene.2021.04.004.
  8. Zhong, N., Li, L., Xu, X., Cheong, L.Z., Xu, Z. & Li, B. (2013). High yield of monoacylglycerols production through low-temperature chemical and enzymatic glycerolysis. Europ. J. Lipid Sci. Technol. 115(6), 684–690. DOI: 10.1002/ejlt.201200377.
  9. Coman, S.M. & Parvulescu, V.I. Published online 2013. Heterogeneous Catalysis for Biodiesel Production. The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio--Chemicals. 93–136. DOI: 10.1016/B978-0-444-56330-9.00004-8.
  10. Navas, M.B., Ruggera, J.F., Lick, I.D. & Casella, M.L. (2020). A sustainable process for biodiesel production using Zn/Mg oxidic species as active, selective and reusable heterogeneous catalysts. Biores. Bioprocess. 7(1). DOI: 10.1186/s40643-019-0291-3.
  11. Lee, H.V., Juan, J.C., Yun Hin, T.Y. & Ong, H.C. (2016). Environment-friendly heterogeneous alkaline-Based mixed metal oxide catalysts for biodiesel production. Energies (Basel) 9(8). DOI: 10.3390/en9080611.
  12. Mostafa, N.A., Maher, A. & Abdelmoez, W. (2013). Production of mono-, di-, and triglycerides from waste fatty acids through esterification with glycerol. Adv. Biosc. Biotechnol. 4(09), 900–907. DOI: 10.4236/abb.2013.49118.
  13. Belelli, PG.G., Ferretti, CA.A., Apesteguía, CR.R., Ferullo, RM.M. & Di Cosimo, JI.I. (2015). Glycerolysis of methyl oleate on MgO: Experimental and theoretical study of the reaction selectivity. J. Catal. 323, 132–144. DOI: 10.1016/j.jcat.2015.01.001.
  14. Wangi, I.P., Supriyanto, S., Sulistyo, H. & Hidayat, C. (2022). Sodium Silicate Catalyst for Synthesis Monoacylglycerol and Diacylglycerol-Rich Structured Lipids : Product Characteristic and Glycerolysis – Interesterification Kinetics. 17(2). DOI: 10.9767/bcrec.17.2.13306.250-262.
  15. Ye, B., Qiu, F., Sun, C., Li, Y. & Yang, D. (2014). Bio-diesel production from soybean oil using heterogeneous solid base catalyst. J. Chem. Technol. Biotech. 89(7), 988–997. DOI: 10.1002/jctb.4190.
  16. Prabu, M., Manikandan, M., Kandasamy, P., Kalaivani, P.R., Rajendiran, N. & Raja, T. (2019). Synthesis of Biodiesel using the Mg/Al/Zn Hydrotalcite/SBA-15 Nanocomposite Catalyst. ACS Omega. 4(2), 3500–3507. DOI: 10.1021/acsomega.8b02547.
  17. Chen, Y.C., Lin, D.Y. & Chen, B.H. (2019). Metasilicate-based catalyst prepared from natural diatomaceous earth for biodiesel production. Renew Energy. 138, 1042–1050. DOI: 10.1016/j.renene.2019.02.054.
  18. Nguyen-Phu, H., Park, C.-yi. & Eun, W.S. (2016). Activated red mud-supported Zn/Al oxide catalysts for catalytic conversion of glycerol to glycerol carbonate: FTIR analysis. Catal. Commun. 85(3), 52–56. DOI: 10.1016/j.catcom.2016.07.012.
  19. Jagadeeswaraiah, K., Kumar, C.R., Prasad, P.S.S., Loridant, S. & Lingaiah, N. (2014). Synthesis of glycerol carbonate from glycerol and urea over tin-tungsten mixed oxide catalysts. Appl. Catal. A Gen. 469, 165–172. DOI: 10.1016/j.apcata.2013.09.041.
  20. Sulistyo, H., Sediawan, W.B., Suyatmo, R.I.D. & Hartati, I. (2021). Kinetic studies of the glycerolysis of urea to glycerol carbonate in the presence of amberlyst-15 as catalyst. Bull. Chem. Reaction Engin. Catal. 16(1), 52–62. DOI: 10.9767/BCREC.16.1.8893.52-62.
  21. Konwar, L.J., Mäki-Arvela, P., Kumar, N., et al. (2016). Selective esterification of fatty acids with glycerol to monoglycerides over –SO3H functionalized carbon catalysts. Reaction Kinet. Mech. Catal. 119(1), 121–138. DOI: 10.1007/s11144-016-1040-7.
  22. Zhang, S., Fu, J., Xing, S., Li, M., Liu, X., Yang, L. & Lv, P. (2023). Sodium Silicates Modified Calcium Oxide as a High-Performance Solid Base Catalyst for Biodiesel Production. Catalysts. 13(4), 775. DOI: 10.3390/catal13040775.
  23. Siregar, A.G.A., Manurung, R. & Taslim, T. (2021). Synthesis and characterization of sodium silicate produced from corncobs as a heterogeneous catalyst in biodiesel production. Indonesian J. Chem. 21(1), 88–96. DOI: 10.22146/ijc.53057.
  24. Ferretti, C.A., Apesteguía, C.R. & Di Cosimo, J.I. (2011). MgO-based catalysts for monoglyceride synthesis from methyl oleate and glycerol: Effect of Li promotion. Appl. Catal. A Gen. 399(1–2), 146–153. DOI: 10.1016/j.apcata.2011.03.051.
  25. Guo, F., Peng, Z.G., Dai, J.Y. & Xiu, Z.L. (2010). Calcined sodium silicate as solid base catalyst for biodiesel production. Fuel Proces. Technol. 91(3), 322–328. DOI: 10.1016/j.fuproc.2009.11.003.
  26. Fallah Kelarijani, A., Gholipour Zanjani, N., Kamran Pirzaman, A., Kelarijani, A., Zanjani, N. & Pirzaman, A. (2020). Ultrasonic Assisted Transesterification of Rapeseed Oil to Biodiesel Using Nano Magnetic Catalysts. Waste Biomass Valorization. 11(6), 2613–2621. DOI: 10.1007/s12649-019-00593-1.
  27. Pithani, S., Karlsson, S., Emtenäs, H. & Öberg, C.T. (2019). Using Spinchem Rotating Bed Reactor Technology for Immobilized Enzymatic Reactions: A Case Study. Org Process Res Dev. 23(9), 1926–1931. DOI: 10.1021/acs.oprd.9b00240.
  28. de Oliveira, K.G., de Lima, R.R.S., de Longe, C., de C. Bicudo, T., Sales, R. V., de Carvalho, L.S., Oliveira, K.G. De., Lima, R.R.S. De. & Longe, C. De. (2022). Sodium and potassium silicate-based catalysts prepared using sand silica concerning biodiesel production from waste oil. Arabian J. Chem. 15(2), 103603. DOI: 10.1016/j.arabjc.2021.103603.
  29. Brunauer, S., Emmett, P.H. & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 60(2), 309–319. DOI: 10.1021/ja01269a023.
  30. Barrett, E.P., Joyner, L.G. & Halenda, P.P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 73(1), 373–380. DOI: 10.1021/ja01145a126.
  31. Li, B., Li, H., Zhang, X., Fan, P., Liu, L., Li, B., Dong, W. & Zhao, B. (2019). Calcined sodium silicate as an efficient and benign heterogeneous catalyst for the transesterification of natural lecithin to L-α-glycerophosphocholine. Green Proces. Synthesis. 8(1), 78–84. DOI: 10.1515/gps-2017-0190.
  32. AOCS. Published online 2009. AOCS Ca 5a-40 Free Fatty Acids. In: Official Methods and Recommended Practices of the American Oil Chemist’s Society. 2009. https://myaccount.aocs.org/PersonifyEbusiness/Store/Product-Details?productId=111480
  33. Subroto, E., Wisamputri, M.F., Supriyanto., Utami, T. & Hidayat, C. (2020). Enzymatic and chemical synthesis of high mono- and diacylglycerol from palm stearin and olein blend at different type of reactor stirrers. J. Saudi Soc. Agric. Sci. 19(1), 31–36. DOI: 10.1016/j.jssas.2018.05.003.
  34. Kılıç, B. & Özer, C.O. (2019). Potential use of inter-esterified palm kernel oil to replace animal fat in frankfurters. Meat Sci. 148(October 2018), 206–212. DOI: 10.1016/j.meatsci.2018.08.024.
  35. Sun, Z., Duan, X., Srinivasakannan, C. & Liang, J. (2018). Preparation of magnesium silicate/carbon composite for adsorption of rhodamine B. RSC Adv. 8(14), 7873–7882. DOI: 10.1039/c7ra12848g.
  36. Fan, F., Jia, L., Guo, X., Lu, X. & Chen, J. (2013). Preparation of novel ethylene glycol monomethyl ether fatty acid monoester biodiesel using calcined sodium silicate. Energy and Fuels. 27(9), 5215–5221. DOI: 10.1021/ef401514e.
  37. Gliński, M., Iwanek Nee Wilczkowska, E.M., Ulkowska, U., Czajka, A. & Kaszkur, Z. (2021). Catalytic activity of high-surface-area amorphous mgo obtained from upsalite. Catalysts 11(11), 1–14. DOI: 10.3390/catal11111338.
  38. Zahir, M.H., Rahman, M.M.M., Irshad, K. & Rahman, M.M.M. (2019). Shape-stabilized phase change materials for solar energy storage: MgO and mg(OH)2 mixed with polyethylene glycol. Nanomaterials 9(12), 1–21. DOI: 10.3390/nano9121773.
  39. Gao, X., Asgar, H., Kuzmenko, I. & Gadikota, G. (2021). Architected mesoporous crystalline magnesium silicates with ordered pore structures. Microp. Mesop. Mater. 327,. DOI: 10.1016/j.micromeso.2021.111381.
  40. Manríquez-Ramírez, M., Gómez, R., Hernández-Cortez, J.G., Zúñiga-Moreno, A., Reza-San Germán, C.M. & Flores-Valle, S.O. (2013). Advances in the transesterification of triglycerides to biodiesel using MgO–NaOH, MgO–KOH and MgO–CeO2 as solid basic catalysts. Catal Today. 212, 23–30. DOI: 10.1016/j.cattod.2012.11.005.
  41. Balakrishnan, G., Velavan, R., Mujasam Batoo, K. & Raslan, E.H. (2020). Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results Phys. 16(February), 103013. DOI: 10.1016/j.rinp.2020.103013.
  42. Stefanidis, S.D., Karakoulia, S.A., Kalogiannis, K.G., Iliopoulou, E.F., Delimitis, A., Yiannoulakis, H., Zampetakis, T., Lappas, A.A. & Triantafyllidis, K.S. (2016). Natural magnesium oxide (MgO) catalysts: A cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Appl. Catal. B. 196, 155–173. DOI: 10.1016/j.apcatb.2016.05.031.
  43. Singh, N., Singh, P.K., Shukla, A., Singh, S. & Tandon, P. (2016). Synthesis and Characterization of Nanostructured Magnesium Oxide: Insight from Solid-State Density Functional Theory Calculations. J. Inorg. Organomet. Polym. Mater. 26(6), 1413–1420. DOI: 10.1007/s10904-016-0411-x.
  44. Di Cosimo, J.I., Díez, V.K., Ferretti, C. & Apesteguía, C.R. (2014). Basic catalysis on MgO: Generation, characterization and catalytic properties of active sites. Catalysis 26(3000), 1–28. DOI: 10.1039/9781782620037-00001.
  45. Kahlenberg, V. (2010). Structural chemistry of anhydrous sodium silicates - A review. Chimia (Aarau). 64(10), 716–722. DOI: 10.2533/chimia.2010.716.
  46. Anggoro, D.D., Buchori, L., Sasongko, S.B. & Oktavianty, H. (2019). Basicity Optimization of KF/Ca-MgO Catalyst using Impregnation Method. Bull. Chem. Reaction Engin. Catal. 14(3), 678–682. DOI: 10.9767/bcrec.14.3.4248.678-682.
  47. Guo, F., Wei, N.N., Xiu, Z.L. & Fang, Z. (2012). Transesterification mechanism of soybean oil to biodiesel catalyzed by calcined sodium silicate. Fuel. 93, 468–472. DOI: 10.1016/j.fuel.2011.08.064.
  48. Dijkstra, A.J. (2020). Some Thoughts on the Mechanism of Ester Interchange Reactions Involving Acylglycerols. Europ. J. Lipid Sci. Technol. 122(10), 2000188. DOI: 10.1002/ejlt.202000188.
  49. Botti, R.F., Innocentini, M.D.M., Faleiros, T.A., Mello, M.F., Flumignan, D.L., Santos, L.K., Franchin, G. & Colombo, P. (2020). Biodiesel Processing Using Sodium and Potassium Geopolymer Powders as Heterogeneous Catalysts. Molecules 25(12). DOI: 10.3390/molecules25122839.
Language: English
Page range: 17 - 24
Published on: Dec 31, 2024
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Arief Rakhman Affandi, Ria Millati, Chusnul Hidayat, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.