Have a personal or library account? Click to login
Immobilization of permeabilized cells of baker’s yeast for decomposition of H2O2 by catalase Cover

Immobilization of permeabilized cells of baker’s yeast for decomposition of H2O2 by catalase

Open Access
|Jun 2019

References

  1. 1. Pscheidt, B. & Glieder, A. (2008). Yeast cell factories for fine chemical and API production. Microb. Cell Fact. 7(1), 25. DOI: 10.1186/1475-2859-7-25.10.1186/1475-2859-7-25
  2. 2. Pratap, U.R., Jawale, D.V., Londhe, B.S. & Mane, R.A. (2011). Baker’s yeast catalyzed synthesis of 1,4- benzothiazines, performed under ultrasonication. J. Mol. Catal. B- Enzym. 68(1), 94–97. DOI: 10.1016/j.molcatb.2010.09.018.10.1016/j.molcatb.2010.09.018
  3. 3. Hounga, J.Y. & Liau, J.S. (2006). Mathematical modeling of asymmetric reduction of ethyl 4-chloro acetoacetate by bakers’ yeast. Enzyme Microb. Tech. 38(7), 879–886. DOI: 10.1016/j.enzmictec.2005.02.028.10.1016/j.enzmictec.2005.02.028
  4. 4. Fow, K.L., Poon, L.C.H., Sim, S.T., Chuah, G.K. & Jaenicke, S. (2008). Enhanced asymmetric reduction of ethyl 3-oxobutyrate by baker’s yeast via substrate feeding and enzyme inhibition. Eng. Life Sci. 8(4), 372–380. DOI: 10.1002/elsc.200700052.10.1002/elsc.200700052
  5. 5. Yu, M.A., Hou, Y., Gong, G.H., Zhao, Q., Zhu, X.B., Jiang, L., Yang, X.L. & Liao, F. (2009). Effects of industrial storage on the bioreduction capa city of brewer’s yeast. J. Ind. Microbiol. Biot. 36(1), 157–162. DOI: 10.1007/s10295-008-0483-x.10.1007/s10295-008-0483-x
  6. 6. FAO. (2018). World food and agriculture – statistical pocketbook 2018. Rome. 254 pp. Licence: CC BY-NC-SA 3.0 IGO.
  7. 7. Miranda, R.C., Souza, C.S., Gomes, E.B., Lovaglio, R.B., Lopes, C.E. & Sousa, M.F. (2007). Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape Port in the State of Pernambuco – Brazil. Braz. Arch. Biol. Technol. 50(1), 147–152. DOI: 10.1590/S1516-89132007000100018.10.1590/S1516-89132007000100018
  8. 8. Karimi, M., Hassanshahian, M., Karimi, M. & Hassanshahian, M. (2016). Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Za-rand, Kerman. Braz. J. Microbiol. 47(1), 18–24. DOI: 10.1016/j.bjm.2015.11.032.10.1016/j.bjm.2015.11.032
  9. 9. Kaushal, J., Mehandia, S., Singh, G., Raina, A. & Arya, S.K. (2018). Catalase enzyme: application in bioremediation and food industry. Biocatal. Agric. Biotechnol. 16, 192–199. DOI: 10.1016/j.bcab.2018.07.035.10.1016/j.bcab.2018.07.035
  10. 10. Venkateshwaran, G., Somashekar, D., Prakash, M.H., Agrawal, R., Basappa, S.C. & Joseph R. (1999). Production and utilization of catalase using Saccharomyces cerevisiae. Process Biochem. 34(2), 187–191. DOI: 10.1016/S0032-9592(98)00087-9.10.1016/S0032-9592(98)00087-9
  11. 11. Raducan, A., Cantemir, A.R., Puiu, M. & Oancea, D. (2012). Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Bioproc. Biosyst. Eng. 35(9), 1523–1530. DOI: 10.1007/s00449-012-0742-0.10.1007/s00449-012-0742-022565543
  12. 12. Presecki, A.V. & Vasić–Racki, D. (2005). Production of L–malic acid by permeabilized cells of commercial Saccharomyces sp. Strains. Biotechnol. Lett. 27(23–24), 1835–1839. DOI: 10.1007/s10529-005-3890-3.10.1007/s10529-005-3890-3
  13. 13. Yu, M.A., Wei, Y.M., Zhao, L., Jiang, L., Zhu, X.B. & Qi, W. (2007). Bioconversion of ethyl 4-chloro-3-oxobutanoate by permeabilized fresh brewer’s yeast cells in the presence of allyl bromide. J. Ind. Microbiol. Biot. 34(2), 151–156. DOI: 10.1007/s10295-006-0179-z.10.1007/s10295-006-0179-z
  14. 14. Panesar, P.S., Panesar, R., Singh, R.S. & Bera, M.B. (2007). Permeabilization of yeast yells with organic solvents for β–galactosidase activity. Res. J. Microbiol. 2(1), 34–41. DOI: 10.3923/jm.2007.34.41.10.3923/jm.2007.34.41
  15. 15. Abraham, J. & Bhat, S.G. (2009). Permeabilization of baker’s yeast with N–lauroyl sarcosine. J. Ind. Microbiol. Biotechnol. 35(8), 799–804. DOI: 10.1007/s10295-008-0350-9.10.1007/s10295-008-0350-9
  16. 16. Sekhar, S., Bhat, N. & Bhat, S.G. (1999). Preparation of detergent permeabilized Bakers’ yeast whole cell catalase. Proc. Biochem. 34(4), 349–354. DOI: 10.1016/S0032-9592(98)00105-8.10.1016/S0032-9592(98)00105-8
  17. 17. Trawczynska, I. & Wojcik, M. (2014). Application of Response Surface Methodology for optimization of permeabilization process of baker’s yeast, Pol. J. Chem. Technol. 16(2), 31–35. DOI: 10.2478/pjct-2014-0026.10.2478/pjct-2014-0026
  18. 18. Trawczynska, I. (2015). Research and modeling of the yeast cells permeabilization process using selected alcohols. Published doctoral dissertation. West Pomeranian University of Technology Szczecin.
  19. 19. Beers, R.F. & Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195(1), 133–140.10.1016/S0021-9258(19)50881-X
  20. 20. Chance, B. (1950). The reactions of catalase in the presence of the notatin system. Biochem. J. 46(4), 387–402.10.1042/bj0460387127544015420164
  21. 21. Idris, A. & Suzana, W. (2006). Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem. 41(4), 1117–1123. DOI: 10.1016/j.procbio.2005.12.002.10.1016/j.procbio.2005.12.002
  22. 22. Liouni, M., Drichoutis, P. & Nerantzis, E.T. (2007). Studies of the mechanical properties and the fermentation behavior of double layer alginate–chitosan beads, using Saccharomyces cerevisiae entrapped cells. World J. Microb. Biot. 24(2), 281–288. DOI: 10.1007/s11274-007-9467-7.10.1007/s11274-007-9467-7
  23. 23. Gokgoz, M. & Yigitoglu, M. (2011). Immobilization of Saccharomyces Cerevisiae on to modified carboxymethylcellulose for production of ethanol. Bioproc. Biosyst. Eng. 34(7), 849–857. DOI: 10.1007/s00449-011-0535-x.10.1007/s00449-011-0535-x
  24. 24. Suenaga, T., Aoyagi, R., Sakamoto, N., Riya, S., Ohashi H., Hosomi M., Tokuyama, H. & Terada, A. (2018). Immobilization of Azospira sp. strain I13 by gel entrapment for mitigation of N2O from biological wastewater treatment plants: Biokinetic characterization and modelling. J. Biosci. Bioeng. 126(2), 213–219. DOI: 10.1016/j.jbiosc.2018.02.014.10.1016/j.jbiosc.2018.02.014
  25. 25. Lee, K.H., Choi, I.S., Kim, Y.G., Yang, D.J. & Bae, H.J. (2011). Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresource Technol. 102(17), 8191–8198. DOI: 10.1016/j.biortech.2011.06.063.10.1016/j.biortech.2011.06.063
  26. 26. Suzuki, T., Yamaguchi, T. & Ishida, M. (1998). Immobilization of Prototheca zopfii in calcium alginate beads for the degradation of hydrocarbons. Process Biochem. 33(5), 541–546. DOI: 10.1016/S0032-9592(98)00022-3.10.1016/S0032-9592(98)00022-3
  27. 27. Taylor, A., Molzahn, P., Bushnell, T., Bushnell, T., Cheney, C., LaJeunesse, M., Azizian, M. & Semprini, L. (2018). Immobilization of Methylosinus trichosporium OB3b for methanol production. J. Ind. Microbiol. Biotechnol. 45(3), 201–211. DOI: 10.1007/s10295-018-2010-z.10.1007/s10295-018-2010-z
  28. 28. Elibol, M. & Moreira A.R. (2003). Production of extracellular alkaline protease by immobilization of the marine bacterium Teredinibacter turnirae. Process Biochem. 38(10), 1445–50. DOI: 10.1016/S0032-9592(03)00024-4.10.1016/S0032-9592(03)00024-4
  29. 29. Carvalho, W., Silva, S.S., Converti, A., Vitolo, M., Felipe, M.G.A., Roberto, I.C., Silva, M.B. & Manchilha, I.M. (2002). Used of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolysate. Appl. Biochem. Biotech. 98(1–9), 489–496. DOI: 10.1385/ABAB:98-100:1-9:489.10.1385/ABAB:98-100:1-9:489
  30. 30. Duarte, J.C., Rodrigues, J.A., Moran, P.J., Valença, G.P. & Nunhez, J. R. (2013). Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express. 3, 31. DOI: 10.1186/2191-0855-3-31.10.1186/2191-0855-3-31
  31. 31. Kaushal, J., Seema, Singh, G. & Arya, S.K. (2018). Immobilization of catalase onto chitosan and chitosan-bentonite complex: A comparative study. Biotechnol. Rep. 18, 251–258. DOI: 10.1016/j.btre.2018.e00258.10.1016/j.btre.2018.e00258
  32. 32. Seah, T.C.M. & Kaplan, J.G. (1973). Purification and properties of the catalase of bakers’ yeast. J. Biol. Chem. 248(8), 2889–2893.10.1016/S0021-9258(19)44090-8
  33. 33. D’Souza, S.F., Deshpande, A. & Nadkarni, G.B. (1987). Effect of permeabilization on the thermostability of catalase in immobilized yeast cells. Biotechnol. Lett. 9(9), 625–628. DOI: 10.1007/BF01033199.10.1007/BF01033199
Language: English
Page range: 59 - 63
Published on: Jun 28, 2019
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Ilona Trawczyńska, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.