Have a personal or library account? Click to login
A novel MPPT Algorithm Based on MRAC-FUZZY Controller for Solar Photovoltaic Systems Cover

A novel MPPT Algorithm Based on MRAC-FUZZY Controller for Solar Photovoltaic Systems

Open Access
|Jun 2025

References

  1. Abdessamia, E., Dhafer, M. and Abdelkader, M. (2019). Intelligent Control of a Photovoltaic Pumping System. Engineering, Technology & Applied Science Research, 9(5), pp. 4689–4694. doi: 10.48084/etasr.2982
  2. Ahmad, D., Hussein, S. and Sunil, K. (2024). Novel MPPT Controller Augmented with Neural Network for Use with Photovoltaic Systems Experiencing Rapid Solar Radiation Changes. Sustainability, 16(3), p. 1021. doi: 10.3390/su16031021
  3. Ahmed, J. and Salam, Z. (2015). An Improved Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) Algorithm for Higher Efficiency. Applied Energy, 150, pp. 97–108. doi: 10.1016/j.apenergy.2015.04.006
  4. Amit, K. S., Rupendra, K. P., Sushabhan, C., Ahmad, F. M., Majed, A. A., Hasmat, M. and Fausto, P. G. M. (2023). Role of Metaheuristic Approaches for Implementation of Integrated MPPT-PV Systems: A Comprehensive Study. Mathematics, 11(2), p. 269. doi: 10.3390/math11020269
  5. Anagreh, Y. N., Alnassan, A. and Radaideh, A. (2021). High Performance MPPT Approach for Off-Line PV System Equipped With Storage Batteries and Electrolyzer. International Journal of Renewable Energy Development, 10(3), pp. 507–515. doi: 10.14710/ijred.2021.34131
  6. Bhukya, K. N., Tarun, K. C. and Kalyan, C. (2017). Performance Analysis of Maximum Power Point Tracking Algorithms Under Varying Irradiation. International Journal of Renewable Energy Development, 6(1), pp. 65–74. doi: 10.14710/ijred.6.1.65-74
  7. Carlos, R. A., John, T. G. and Omar, R. A. (2017). Fuzzy Logic Based MPPT Controller for a PV System. Energies, 10(12), pp. 1–18. doi: 10.3390/en10122036
  8. Chiheb, B. R., Fethi, F., Hichem, H., Abderrahmen, Z. and Abelkader, C. (2023). A New MPPT Controller Based on a Modified Multiswarm PSO Algorithm Using an Adaptive Factor Selection Strategy for Partially Shaded PV Systems. Transactions of the Institute of Measurement and Control, 46(10), pp. 1991–2000. doi: 10.1177/01423312231225992
  9. Chiheb, B. R., Hichem, H., Fethi, F., Afef, M., Abderrahmen, Z. and Abelkader, C. (2024). Real-Time Implementation of a Novel MPPT Control Based on the Improved PSO Algorithm Using an Adaptive Factor Selection Strategy for Photovoltaic Systems. ISA Transactions, 146, pp. 496–510. doi: 10.1016/j.isatra.2023.12.024
  10. Chiheb, B. R., Mahbouba, B., Hichem, H. and Abderrahmen, Z. (2022). MPPT Based on a Novel Multi-swarm PSO with Factor Selection Strategy for PV Applications. International Journal of Circuits and Electronics, 7, pp. 41–46. doi: 10.1178/2022-41-46
  11. Dharmendra, S. Y. and Javed, A. (2023). Maximum Power Point Tracking (MPPT) Control of Grid Connected Solar-Wind Energy Conversion System. In: International Conference on Power, Instrumentation, Energy and Control (PIECON). doi: 10.1109/PIECON56912.2023.10085842.
  12. Ersalina, W. M., Agus, R., Ardath, K. and Rudi, D. (2023). Particle Swarm Optimization (PSO) based Photovoltaic MPPT Algorithm under the Partial Shading Condition. Journal electronika dan telekominikasi, 23(2), pp. 99–107. doi: 10.55981/jet.552
  13. Fares, B., Abdeddaim, S. and Betka, A. (2024). Enhancing PV Systems with Intelligent MPPT and Improved Control Strategy of Z-Source Inverter. Power Electronics and Drives, 9(44), pp. 1–20. doi: https://doi.org/10.2478/pead-2024-0001
  14. Hayat, A., Abdelghani, O. and Belkassem, T. (2022). MPPT using PSO Technique Comparing to Fuzzy Logic and P&O Algorithms for Wind Energy Conversion System. WSEAS Transactions on Systems and Control, 17, pp. 305–313. doi: 10.37394/23203.2022.17.35
  15. Hichem, H., Chiheb, B. R. and Abderrahmen, Z. (2019). Real-Time Study of a Photovoltaic System with Boost Converter Using the PSO-RBF Neural Network Algorithms in a MyRio Controller. Solar Energy, 183, pp. 1–16. doi: 10.1016/j.solener.2019.02.064
  16. Jagadeshwar, M. and Das, D. K. (2022). A Novel Adaptive Model Predictive Control Scheme with Incremental Conductance for Extracting Maximum Power from a Solar Panel. The Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 46, pp. 653–664. doi: 10.1007/s40998-022-00495-4
  17. Jaouher, C., Fethi, F., Abderrahmen, Z. and Mohamed, J. (2019). A methodology for modelling of Takagi-Sugeno fuzzy model based on multi particle swarm optimization: Application to gas furnace system. In: 2019 6th International Conference on Control, Decision, and Information Technologies (CoDIT), IEEE, Paris: France, 23–26 April 2019. pp. 1835– 1840. doi: 10.1109/CoDIT.2019.8820411.
  18. Jesus, A. L., Carlos, V. S., Cristian, C. P. and Dacil, D. B. (2023). Solar Photovoltaic Maximum Power Point Tracking Controller Optimization Using Grey Wolf Optimizer: A Performance Comparison Between Bio-Inspired and Traditional Algorithms. Expert Systems with Applications, 211(5), pp. 1–16. doi: 10.1016/j.eswa.2022.118700
  19. Khaterchi, H., Chiheb, B. R., Ahmed, J. and Abderrahmen, Z. (2025). Innovative Hybrid War Strategy Optimization with Incremental Conductance for Maximum Power Point Tracking in Partially Shaded Photovoltaic Systems. Power Electronics and Drives, 10. pp. 1–18. doi: 10.2478/pead-2025-0001
  20. Koofigar, H. R. (2016). Adaptive Robust Maximum Power Point Tracking Control for Perturbed Photovoltaic Systems with Output Voltage Estimation. ISA Transactions, 60, pp. 285–293. doi: 10.1016/j.isatra.2015.11.003
  21. Kumar, S. B. (2015). A Study on Global Solar PV Energy Developments and Policies with Special Focus on the Top Ten Solar PV Power Producing Countries. Renewable and Sustainable Energy Reviews, 43(C), pp. 621–634. doi: 10.1016/j.rser.2014.11.058
  22. Liu, F., Duan, S., Liu, F. and Kang, H. (2008). A Variable Step Size INC MPPT Method for PV Systems. IEEE Transactions on Industrial Electronics, 55(7), pp. 2622–2628. doi: 10.1109/TIE.2008.920550
  23. Li, D., Wang, X., Wang, J. and Zhou, Z. (2024). Differential Flat & PSO Based Photovoltaic Maximum Power Point Tracking Control Under Partial Shading Condition. Measurement and Control, 57(2), pp. 103–112. doi: 10.1177/00202940231194108
  24. M’hand, O., Mohamed, A. and Brahim, B. (2022). Low-Cost Microcontroller Implementation of Takagi– Sugeno Fuzzy MPPT Controller for Photovoltaic Systems Engineering. International Journal of Electrical and Computer Engineering Systems, 13(10), pp. 971–981. doi: 10.32985/ijeces.13.10.12
  25. Madhavan, K. P. and Ansari, I. A. (2022). Maximum Power Point Tracking of Partially Shaded PV System with Improved PSO Strategy, Soft Computing: Theories and Applications. Lecture Notes in Networks and Systems, 425, pp. 898–903. doi: 10.1007/978-981-19-0707-4_80
  26. Mahbouba, B., Chiheb, B. R., Hichem, H. and Abderrahmen, Z. (2022). Comparative study of P&O and PSO particle swarm optimization MPPT controllers for photovoltaic systems. In: 2022 8th International Conference on Control, Decision, and Information Technologies (CoDIT), pp. 1–6. doi: 10.1109/CoDIT55151.2022.9804021.
  27. Mahbouba, B., Chiheb, B. R., Hichem, H. and Abderrahmen, Z. (2022b). Comparative Study of P&O and PSO Particle Swarm Optimization MPPT Controllers Under Partial Shading. International Journal of Electrical Engineering and Computer Science, 4, pp. 45–50. doi: 10.1179/2022-45-50
  28. Mazen, Y. B., Mohamed, A. A. A. and Saad, M. A. (2021). Maximum Power Point Tracker Controller Using Fuzzy Logic Control with Battery Load for Photovoltaics Systems. Smart Grid and Renewable Energy, 12(10), pp. 163–181. doi: 10.4236/sgre.2021.1210010
  29. Mbarki, B., Fethi, F., Jaouher, C. and Abderrahmen, Z. (2022). Adaptive Neuro-Fuzzy Inference System Algorithm-Based Robust Terminal Sliding Mode Control MPPT for a Photovoltaic System. Transactions of the Institute of Measurement and Control, 46(2), pp. 316–325. doi: 10.1177/01423312231173022
  30. Mohamed, H., Mohamedy, A., Mahmoud, M. S. M., Ninet, M. A., Mohamed, B. and Abdelkader, Z. (2022). Comparison between P&O and SSO Techniques Based MPPT Algorithm for Photovoltaic Systems. International Journal of Electrical and Computer Engineering (IJECE), 12(1), pp. 32–40. doi: 10.11591/ijece.v12i1.pp32-40
  31. Nelson, L. M. and Nihat, I. (2022). Sliding Mode Control-Based MPPT and Output Voltage Regulation of a Stand-alone PV System. Power Electronics and Drives, 7(42), pp. 159–173. doi: 10.2478/pead-2022-0012
  32. Nihat, P. (2023). Performance Analysis of Different Optimization Algorithms for MPPT Control Techniques under Complex Partial Shading Conditions in PV Systems. Energies, 16(8), p. 3358. doi: 10.3390/en16083358
  33. Pankaj, S. and Rajiv, D. (2021). An Improved 2-Level MPPT Scheme for Photovoltaic Systems Using a Novel High-Frequency Learning Based Adjustable Gain-MRAC Controller. Scientific Reports, 11(1), p. 23131. doi: 10.1038/s41598-021-02586-4
  34. Parian, F. M. and Amiri, J. (2021). Intelligent MPPT for Photovoltaic Panels Using a Novel Fuzzy Logic and Artificial Neural Networks Based on Evolutionary Algorithms. Energy Report, 7, pp. 1338–1348. doi: 10.1016/j.egyr.2021.02.051
  35. Rai, R. K. and Rahi, O. P. (2022). Fuzzy logic based control technique using MPPT for solar PV system. In: First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). doi: 10.1109/ICEEICT53079.2022.9768650.
  36. Revathy, S. R., Kirubakaran, V., Rajeshwaran, M., Balasundaram, T., Chandra, V. S., Saad, A., Bodour, S. R., Ahmad, O. B. and Endalkachew, M. A. (2022). Design and Analysis of ANFIS – Based MPPT Method for Solar Photovoltaic Applications. International Journal of Photoenergy, 2022, pp. 1–9. doi: 10.1155/2022/9625564
  37. Rezk, H., Aly, M., Al-Dhaifallah, M. and Shoyama, M. (2019). Design and Hardware Implementation of New Adaptive Fuzzy Logic-Based MPPT Control Method for Photovoltaic Applications. IEEE Access, 7, pp. 106427–106438. doi: 10.1109/ACCESS.2019.2932694
  38. Rim, A., Mohsen, A. and Oualha, A. (2020). Photovoltaic Power Forecast Using Empirical Models and Artificial Intelligence Approaches for Water Pumping Systems. Renewable Energy, 153, pp. 1016–1028. doi: 10.1016/j.renene.2020.02.065
  39. Sahu, J. B., Nayak, B. and Choudhur, S. (2022). Power Tracking Capability Enhancement of a Grid-Tied Partially Shaded Photovoltaic System Through MPC Based Maximum Power Point Technique. International Journal of Renewable Energy Research, 12(2), pp. 1000–1012. doi: 10.20508/ijrer.v12i2.12945.g8484
  40. Saibal, M., Deepak, K. S. and Ashok, K. A. (2022). A Novel MRAC-MPPT Scheme to Enhance Speed and Accuracy in PV Systems. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 47, pp. 233–254. doi: 10.1007/s40998-022-00542-0
  41. Seba, S., Mouhoub, B. and Khalil, B. (2023). A Comparative Analysis of Series and Parallel Topologies of Perturb and Observe (P&O) and Incremental Conductance (InC) MPPT Algorithms for Photovoltaic System. Algerian Journal of Renewable Energy and Sustainable Development, 5(1), pp. 11–21. doi: 10.46657/ajresd.2023.5.1.2
  42. Shaukat, U. (2021). Robust Back-stepping Based Higher Order Sliding Mode Control of Non-Inverted Buck-Boost Converter for a Photovoltaic System. Power Electronics and Drives, 6(41), pp. 113–127. doi: https://doi.org/10.2478/pead-2021-0007
  43. Tahmid, H., Adil, S., Mohamed, T., Shabana, U., Amal, B. and Mohamed, A. H. (2023). An Evaluation of ANN Algorithm Performance for MPPT Energy Harvesting in Solar PV Systems. Sustainability, 15(14), p. 11144. Available at: https://RePEc:gam:jsusta:v:15:y:2023:i:14:p:11144-:d:1196075. doi: 10.3390/su151411144
  44. Yassine, A., Khalid, A., Lahoussine, E. and Elmostafa, A. (2022). New Improved MPPT Based on Artificial Neural Network and PI Controller for Photovoltaic Applications. International Journal of Power Electronics and Drive Systems (IJPEDS), 13(3), pp. 1791–1801. doi: 10.11591/ijpeds.v13. i3.pp1791-1801
DOI: https://doi.org/10.2478/pead-2025-0011 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 140 - 156
Submitted on: Jan 8, 2025
Accepted on: May 15, 2025
Published on: Jun 19, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Brahmi Mahbouba, Marai Afef, Hamdi Hichem, Ben Regaya Chiheb, Zaafouri Abderrahmen, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.