Have a personal or library account? Click to login
Estimating small modular reactor costs: A bottom-up cost model analysis Cover

References

  1. AACE International. (2005). Recommended Practice 18R-97: Cost Estimate Classification System. Morgantown, WV, USA: AACE International.
  2. Apergis, N., Payne, J. E., Menyah, K., & Wolde-Rufael, Y. (2010). On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth. Ecological Economics, 69(11), pp. 2255-2260. doi: 10.1016/j. ecolecon.2010.06.014
  3. Black & Veatch. (2012). Cost and performance data for power generation technologies. National Renewable Energy Laboratory, p. 2012. https://refman.energytransitionmodel.com/publications/1921
  4. Boarin, S., Mancini, M., Ricotti, M., & Locatelli, G. (2021). Economics and financing of small modular reactors (SMRs). In Handbook of Small Modular Nuclear Reactors (pp. 241-278). Elsevier. https://doi.org/10.1016/B978-0-12-823916-2.00010-2
  5. Buongiorno, J., Corradini, M., Parsons, J., & Petti, D. (2018). The Future of Nuclear Energy in a Carbon-Constrained World. Cambridge, MA, USA: Massachusetts Institute of Technology (MIT).
  6. Carelli, M. D., Conway, L. E., Oriani, L., Petrović, B., Lombardi, C. V., & Ricotti, M. E., et al. (2004). The design and safety features of the IRIS reactor. Nuclear Engineering and Design., 230 (1-3), pp. 151-167. doi: 10.1016/j.nucengdes.2003.11.022
  7. Carelli, M. D., Garrone, P., Locatelli, G., Mancini, M., Mycoff, C., & Trucco, P., et al. (2010). Economic features of integral, modular, small-to-medium size reactors. Progress in Nuclear Energy, 52 (4), pp. 403-414. doi: 10.1016/j.pnucene.2009.09.003
  8. DOE. (1981). Energy Economic Data Base (EEDB) Program.
  9. DOE. (1987). Phase IX Update (1987) Report For The Energy Economic Data Base Program EEDB – IX.
  10. EIA. (2020). Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies.
  11. Energy Options Network (EON). (2017). What Will Advanced Nuclear Power Plants Cost? Washington, DC, USA: Energy Options Network, in collaboration with the Energy Innovation Reform Project (EIRP).
  12. Energy Technologies Institute (ETI). (2018). Nuclear Cost Drivers Project: Summary Report. Loughborough, UK: Energy Technologies Institute.
  13. Federal Reserve. Economic Research – Board of governors of the federal reserve system.
  14. Ganda, F., Hoffman, E., Taiwo, T. A., Kim, T. K., & Hansen, J. (2019). Report on the ACCERT Cost Algorithms Tool. Argonne, IL, USA: Argonne National Laboratory, U.S. Department of Energy. Available at: https://www.osti.gov/biblio/1525999
  15. Ganda, F., Taiwo, T. A., Kim, T. K. (2018). Report on the Update of Fuel Cycle Cost Algorithms. Argonne, IL, USA: Argonne National Laboratory, U.S. Department of Energy.
  16. Holcomb, D. E., Peretz, F. J., Qualls, A. L. (2011). Advanced High Temperature Reactor Systems and Economic Analysis: September 2011 Status. ORNL/TM-2011/364. Oak Ridge, TN, USA: Oak Ridge National Laboratory, U.S. Department of Energy.
  17. International Atomic Energy Agency (IAEA). (1999). Economic Evaluation of Bids for Nuclear Power Plants: 1999 Edition. Technical Reports Series No. 369. Vienna, Austria: International Atomic Energy Agency.
  18. International Atomic Energy Agency (IAEA). (2020). Advances in Small Modular Reactor Technology Developments., Vienna, Austria: International Atomic Energy Agency.
  19. Jin, T., & Kim, J. (2018). What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis. Renewable and Sustainable Energy Reviews, 91, 464-471. https://doi.org/10.1016/j.rser.2018.04.022
  20. Jin, T., & Kim, J. (2018). What is Better for Mitigating Carbon Emissions – Renewable Energy or Nuclear Energy? A Panel Data Analysis. Elsevier Ltd. doi: 10.1016/j.rser.2018.04.022
  21. Kim, Y., Kim, M., & Kim, W. (2013). Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy. Energy Policy, 61, pp. 822-828. doi: 10.1016/j.enpol.2013.06.107
  22. Kuznetsov, V. (2008). Options for small and medium sized reactors (SMRs) to overcome loss of economies of scale and incorporate increased proliferation resistance and energy security. Progress in Nuclear Energy, 50(2-6), pp. 242-250. doi: 10.1016/j.pnucene.2007.11.006
  23. Lloyd, C. A., Roulstone, T., & Lyons, R. E. (2021). Progress in Nuclear Energy Transport, constructability, and economic advantages of SMR modularization. Progress in Nuclear Energy, 134 (May 2020), p. 103672. doi: 10.1016/j.pnucene.2021.103672
  24. Lloyd, C., Roulstone, A., & Middleton, C. (2018). The Impact of Modularisation Strategies on Small Modular Reactor Construction Cost. American Nuclear Society. doi: 10.17863/CAM.25793
  25. Locatelli, G., Bingham, C., & Mancini, M. (2014). Small Modular Reactors: A comprehensive overview of their economics and strategic aspects. Progress in Nuclear Energy, 73, pp. 75-85. doi: 10.1016/j.pnucene.2014.01.010
  26. Maronati, G., & Petrovic, B. (2019). Estimating cost uncertainties in nuclear power plant construction through Monte Carlo sampled correlated random variables. Progress in Nuclear Energy, 111, pp. 211-222. doi: 10.1016/j.pnucene.2018.11.011
  27. Maronati, G., Petrovic, B., Van Wyk, J. J., Kelley, M. H., & White, C. C. (2018). EVAL: A methodological approach to identify NPP total capital investment cost drivers and sensitivities. Progress in Nuclear Energy, 104, pp. 190-202. doi: 10.1016/j. pnucene.2017.09.014
  28. Mignacca, B., & Locatelli, G. (2020). Economics and finance of Small Modular Reactors: A systematic review and research agenda. Renewable and Sustainable Energy Reviews, 118. Article number: 109519. doi: 10.1016/j.rser.2019.109519
  29. NEA. (2007). Cost Estimating Guidelines for Generation IV Nuclear Energy Systems.
  30. Nuclear Energy Agency. (2018). Unlocking Reductions in the Construction Costs of Nuclear: A Practical Guide for Stakeholders., Paris, France: OECD Nuclear Energy Agency.
  31. Nuclear Energy Agency (NEA), Generation IV International Forum (GIF). (2007). Cost Estimating Guidelines for Generation IVNuclear Energy Systems. Paris, France: OECD Nuclear Energy Agency.
  32. NuScale and the Utah Associated Municipal Power Systems. Eyepopping new cost estimates released for NuScale small modular reactor. Available at https://ieefa.org/resources/eye-popping-new-cost-estimates-released-nuscale-small-modular-reactor
  33. Samalova, L., Chvala, O., & Maldonado, G. I. (2017). Comparative economic analysis of the Integral Molten Salt Reactor and an advanced PWR using the G4-ECONS methodology. Annals of Nuclear Energy, 99, pp. 258-265. doi: 10.1016/j. anucene.2016.09.001
  34. Shirvan, K. (2022). Final Report – CANES ANP-TR-193. Cambridge, MA, USA: Department of Nuclear Science and Engineering, Massachusetts Institute of Technology.
  35. Stewart, W. R., & Shirvan, K. (2022). Capital cost estimation for advanced nuclear power plants. Renewable and Sustainable Energy Reviews, 155, p. 111880. doi: 10.1016/j. rser.2021.111880
  36. U.S. Department of Energy (DOE). (2018). Deployability of Small Modular Nuclear Reactors for Alberta Applications – Phase II Report. Richland, WA, USA: Pacific Northwest National Laboratory.
  37. U.S. Department of Energy (DOE). (1988). Energy Economic Data Base (EEDB) Phase IXUpdate. DOE/NE-0091. Washington, DC, USA: U.S. Department of Energy.
  38. U.S. Department of Energy (DOE). (1981). Energy Economic Data Base (EEDB) Program. Washington, DC, USA: U.S. Department of Energy.
  39. U.S. Energy Information Administration (EIA). (2020). Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies. Washington, DC, USA: U.S. Energy Information Administration.
  40. U.S. Nuclear Regulatory Commission (NRC). (2020). Final Safety Evaluation Report related to the certification of the NuScale small modular reactor design (Docket No. 52-048). Washington, DC: U.S. NRC.
  41. Vegel, B., & Quinn, J. C. (2017). Economic evaluation of small modular nuclear reactors and the complications of regulatory fee structures. Energy Policy, 104, 395-403. https://doi.org/10.1016/j.enpol.2017.01.043
  42. Vujić, J., Bergmann, R. M., Škoda, R., & Miletić, M. (2012). Small Modular Reactors: Simpler, safer, cheaper? Energy, 45(1), pp. 288-295. doi: 10.1016/j.energy.2012.01.078
  43. Wang, Y., Gu, J., & Wu, J. (2020). Explaining local residents’ acceptance of rebuilding nuclear power plants: The roles of perceived general benefit and perceived local benefit. Energy Policy, 140, p. 111410. doi: 10.1016/j.enpol. 2020.111410
  44. Zhang, Z., Dong, Y., Li, F., Zhang, Z., Wang, H., Huang, X., Li, H., Liu, B., Wu, X., Wang, H., Diao, X., Zhang, H., & Wang, J. (2016). The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) Demonstration Power Plant: An Engineering and Technological Innovation. Engineering, 2(1), 112-118. https://doi.org/10.1016ZJ.ENG.2016.01.020Annexes
DOI: https://doi.org/10.2478/otmcj-2025-0016 | Journal eISSN: 1847-6228 | Journal ISSN: 1847-5450
Language: English
Page range: 279 - 301
Submitted on: Jul 9, 2025
|
Accepted on: Nov 24, 2025
|
Published on: Jan 13, 2026
Published by: University of Zagreb
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Mauro Mancini, Costanza Mariani, Matteo Mauri, Oscar Agostino Mignone, Marco Enrico Ricotti, published by University of Zagreb
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.