References
- AACE International. (2005). Recommended Practice 18R-97: Cost Estimate Classification System. Morgantown, WV, USA: AACE International.
- Apergis, N., Payne, J. E., Menyah, K., & Wolde-Rufael, Y. (2010). On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth. Ecological Economics, 69(11), pp. 2255-2260. doi: 10.1016/j. ecolecon.2010.06.014
- Black & Veatch. (2012). Cost and performance data for power generation technologies. National Renewable Energy Laboratory, p. 2012. https://refman.energytransitionmodel.com/publications/1921
- Boarin, S., Mancini, M., Ricotti, M., & Locatelli, G. (2021). Economics and financing of small modular reactors (SMRs). In Handbook of Small Modular Nuclear Reactors (pp. 241-278). Elsevier. https://doi.org/10.1016/B978-0-12-823916-2.00010-2
- Buongiorno, J., Corradini, M., Parsons, J., & Petti, D. (2018). The Future of Nuclear Energy in a Carbon-Constrained World. Cambridge, MA, USA: Massachusetts Institute of Technology (MIT).
- Carelli, M. D., Conway, L. E., Oriani, L., Petrović, B., Lombardi, C. V., & Ricotti, M. E., et al. (2004). The design and safety features of the IRIS reactor. Nuclear Engineering and Design., 230 (1-3), pp. 151-167. doi: 10.1016/j.nucengdes.2003.11.022
- Carelli, M. D., Garrone, P., Locatelli, G., Mancini, M., Mycoff, C., & Trucco, P., et al. (2010). Economic features of integral, modular, small-to-medium size reactors. Progress in Nuclear Energy, 52 (4), pp. 403-414. doi: 10.1016/j.pnucene.2009.09.003
- DOE. (1981). Energy Economic Data Base (EEDB) Program.
- DOE. (1987). Phase IX Update (1987) Report For The Energy Economic Data Base Program EEDB – IX.
- EIA. (2020). Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies.
- Energy Options Network (EON). (2017). What Will Advanced Nuclear Power Plants Cost? Washington, DC, USA: Energy Options Network, in collaboration with the Energy Innovation Reform Project (EIRP).
- Energy Technologies Institute (ETI). (2018). Nuclear Cost Drivers Project: Summary Report. Loughborough, UK: Energy Technologies Institute.
- Federal Reserve. Economic Research – Board of governors of the federal reserve system.
- Ganda, F., Hoffman, E., Taiwo, T. A., Kim, T. K., & Hansen, J. (2019). Report on the ACCERT Cost Algorithms Tool. Argonne, IL, USA: Argonne National Laboratory, U.S. Department of Energy. Available at: https://www.osti.gov/biblio/1525999
- Ganda, F., Taiwo, T. A., Kim, T. K. (2018). Report on the Update of Fuel Cycle Cost Algorithms. Argonne, IL, USA: Argonne National Laboratory, U.S. Department of Energy.
- Holcomb, D. E., Peretz, F. J., Qualls, A. L. (2011). Advanced High Temperature Reactor Systems and Economic Analysis: September 2011 Status. ORNL/TM-2011/364. Oak Ridge, TN, USA: Oak Ridge National Laboratory, U.S. Department of Energy.
- International Atomic Energy Agency (IAEA). (1999). Economic Evaluation of Bids for Nuclear Power Plants: 1999 Edition. Technical Reports Series No. 369. Vienna, Austria: International Atomic Energy Agency.
- International Atomic Energy Agency (IAEA). (2020). Advances in Small Modular Reactor Technology Developments., Vienna, Austria: International Atomic Energy Agency.
- Jin, T., & Kim, J. (2018). What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis. Renewable and Sustainable Energy Reviews, 91, 464-471. https://doi.org/10.1016/j.rser.2018.04.022
- Jin, T., & Kim, J. (2018). What is Better for Mitigating Carbon Emissions – Renewable Energy or Nuclear Energy? A Panel Data Analysis. Elsevier Ltd. doi: 10.1016/j.rser.2018.04.022
- Kim, Y., Kim, M., & Kim, W. (2013). Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy. Energy Policy, 61, pp. 822-828. doi: 10.1016/j.enpol.2013.06.107
- Kuznetsov, V. (2008). Options for small and medium sized reactors (SMRs) to overcome loss of economies of scale and incorporate increased proliferation resistance and energy security. Progress in Nuclear Energy, 50(2-6), pp. 242-250. doi: 10.1016/j.pnucene.2007.11.006
- Lloyd, C. A., Roulstone, T., & Lyons, R. E. (2021). Progress in Nuclear Energy Transport, constructability, and economic advantages of SMR modularization. Progress in Nuclear Energy, 134 (May 2020), p. 103672. doi: 10.1016/j.pnucene.2021.103672
- Lloyd, C., Roulstone, A., & Middleton, C. (2018). The Impact of Modularisation Strategies on Small Modular Reactor Construction Cost. American Nuclear Society. doi: 10.17863/CAM.25793
- Locatelli, G., Bingham, C., & Mancini, M. (2014). Small Modular Reactors: A comprehensive overview of their economics and strategic aspects. Progress in Nuclear Energy, 73, pp. 75-85. doi: 10.1016/j.pnucene.2014.01.010
- Maronati, G., & Petrovic, B. (2019). Estimating cost uncertainties in nuclear power plant construction through Monte Carlo sampled correlated random variables. Progress in Nuclear Energy, 111, pp. 211-222. doi: 10.1016/j.pnucene.2018.11.011
- Maronati, G., Petrovic, B., Van Wyk, J. J., Kelley, M. H., & White, C. C. (2018). EVAL: A methodological approach to identify NPP total capital investment cost drivers and sensitivities. Progress in Nuclear Energy, 104, pp. 190-202. doi: 10.1016/j. pnucene.2017.09.014
- Mignacca, B., & Locatelli, G. (2020). Economics and finance of Small Modular Reactors: A systematic review and research agenda. Renewable and Sustainable Energy Reviews, 118. Article number: 109519. doi: 10.1016/j.rser.2019.109519
- NEA. (2007). Cost Estimating Guidelines for Generation IV Nuclear Energy Systems.
- Nuclear Energy Agency. (2018). Unlocking Reductions in the Construction Costs of Nuclear: A Practical Guide for Stakeholders., Paris, France: OECD Nuclear Energy Agency.
- Nuclear Energy Agency (NEA), Generation IV International Forum (GIF). (2007). Cost Estimating Guidelines for Generation IVNuclear Energy Systems. Paris, France: OECD Nuclear Energy Agency.
- NuScale and the Utah Associated Municipal Power Systems. Eyepopping new cost estimates released for NuScale small modular reactor. Available at https://ieefa.org/resources/eye-popping-new-cost-estimates-released-nuscale-small-modular-reactor
- Samalova, L., Chvala, O., & Maldonado, G. I. (2017). Comparative economic analysis of the Integral Molten Salt Reactor and an advanced PWR using the G4-ECONS methodology. Annals of Nuclear Energy, 99, pp. 258-265. doi: 10.1016/j. anucene.2016.09.001
- Shirvan, K. (2022). Final Report – CANES ANP-TR-193. Cambridge, MA, USA: Department of Nuclear Science and Engineering, Massachusetts Institute of Technology.
- Stewart, W. R., & Shirvan, K. (2022). Capital cost estimation for advanced nuclear power plants. Renewable and Sustainable Energy Reviews, 155, p. 111880. doi: 10.1016/j. rser.2021.111880
- U.S. Department of Energy (DOE). (2018). Deployability of Small Modular Nuclear Reactors for Alberta Applications – Phase II Report. Richland, WA, USA: Pacific Northwest National Laboratory.
- U.S. Department of Energy (DOE). (1988). Energy Economic Data Base (EEDB) Phase IXUpdate. DOE/NE-0091. Washington, DC, USA: U.S. Department of Energy.
- U.S. Department of Energy (DOE). (1981). Energy Economic Data Base (EEDB) Program. Washington, DC, USA: U.S. Department of Energy.
- U.S. Energy Information Administration (EIA). (2020). Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies. Washington, DC, USA: U.S. Energy Information Administration.
- U.S. Nuclear Regulatory Commission (NRC). (2020). Final Safety Evaluation Report related to the certification of the NuScale small modular reactor design (Docket No. 52-048). Washington, DC: U.S. NRC.
- Vegel, B., & Quinn, J. C. (2017). Economic evaluation of small modular nuclear reactors and the complications of regulatory fee structures. Energy Policy, 104, 395-403. https://doi.org/10.1016/j.enpol.2017.01.043
- Vujić, J., Bergmann, R. M., Škoda, R., & Miletić, M. (2012). Small Modular Reactors: Simpler, safer, cheaper? Energy, 45(1), pp. 288-295. doi: 10.1016/j.energy.2012.01.078
- Wang, Y., Gu, J., & Wu, J. (2020). Explaining local residents’ acceptance of rebuilding nuclear power plants: The roles of perceived general benefit and perceived local benefit. Energy Policy, 140, p. 111410. doi: 10.1016/j.enpol. 2020.111410
- Zhang, Z., Dong, Y., Li, F., Zhang, Z., Wang, H., Huang, X., Li, H., Liu, B., Wu, X., Wang, H., Diao, X., Zhang, H., & Wang, J. (2016). The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) Demonstration Power Plant: An Engineering and Technological Innovation. Engineering, 2(1), 112-118. https://doi.org/10.1016ZJ.ENG.2016.01.020Annexes