References
- Abdolpour, H., Niewiadomski, P., & Sadowski, Ł (2021). Recycling of steel fibres and spent equilibrium catalyst in ultra-high performance concrete: Literature review, research gaps, and future development. Construction and Building Materials, 309(19), p. e125147. doi: 10.1016/j.conbuildmat.2021.125147
- Arora, A., Yao, Y., Mobasher, B., & Neithalath, N. (2019). Fundamental insights into the compressive and flexural response of binder- and aggregate-optimized ultra-high performance concrete (UHPC). Cement and Concrete Composites, 98, pp. 1-13. doi: 10.1016/j.cemconcomp.2019.01.015
- Babaahmadi, A., Machner, A., Kunther, W., Figueira, J., Hemstad, P., & De Weerdt, K. (2022). Chloride binding in Portland composite cements containing metakaolin and silica fume. Cement and Concrete Research, 161, p. e 106924. doi: 10.1016/j.cemconres.2022.106924
- Bai, Y., Mei, S., Chan, C., & Li, Q. (2021a). Compressive behavior of large-size square PEN FRP-concrete-steel hybrid multi-tube concrete columns. Engineering Structures, 246, p. 113017. doi: 10.1016/j.engstruct.2021.113017
- Bai, Y. L., Yan, Z. W., Ozbakkaloglu, T., Gao, W. Y., & Zeng, J. J. (2021b). Mechanical behavior of large-rupture-strain (LRS) polyethylene naphthalene fiber bundles at different strain rates and temperatures. Construction and Building Materials, 297, p. 123786. doi: 10.1016/j.conbuildmat.2021.123786
- Barbieri, D. M., Hoff, I., & Ho, C. H. (2021). Crushed rocks stabilized with organosilane and lignosulfonate in pavement unbound layers: Repeated load triaxial tests. Frontiers of Structural and Civil Engineering, 15 (2), pp. 412-424. doi: 10.1007/s11709-021-0700-5
- Barbieri, D. M., Hoff, I., & Mørk, M. B. E. (2020). Organosilane and lignosulfonate as innovative stabilization techniques for crushed rocks used in road unbound layers. Transportation Geotechnics, 22. doi: 10.1016/j.trgeo.2019.100308
- Bílek, V., Kalina, L., & Novotný, R. (2023). Structural build-up and breakdown of alkali-activated slag pastes with different order of lignosulfonate and activator addition. Construction and Building Materials, 386, p. e131557. doi: 10.1016/j. conbuildmat.2023.131557
- Brisard, S., Serdar, M., & Monteiro, P. J. M. (2020). Multiscale x-ray tomography of cementitious materials: A review. Cement and Concrete Research, 128(35), p. e105824. doi: 10.1016/j. cemconres.2019.105824
- Cao, W., Yi, W., Yin, S., Peng, J., & Li, J. (2021). A novel low-density thermal insulation gypsum reinforced with superplasticizers. Construction and Building Materials, 278, p. 122421. doi: 10.1016/j.conbuildmat.2021.122421
- Chadegani, A. A., Salehi, H., Yunus, M., Farhadi, H., Fooladi, M., & Farhadi, M. (2013). A comparison between two main academic literature collections: Web of science and scopus databases. Asian Social Science, 9(5), pp. 18-26. doi: 10.5539/ass.v9n5p18
- Chen, W., Jin, R., Xu, Y., Wanatowski, D., Li, B., Yan, L., et al. (2019). Adopting recycled aggregates as sustainable construction materials: A review of the scientific literature. Construction and Building Materials, 218, pp. 483-496. doi: 10.1016/j. conbuildmat.2019.05.130
- Chu, S. H., Li, L., Shen, P. L., Lu, J. X., & Poon, C. S. (2022). Recycling of waste glass powder as paste replacement in green UHPFRC. Construction and Building Materials, 316, p. e125719. doi: 10.1016/j.conbuildmat.2021.125719
- de Oliveira Evaristo, W. F., de Almeida, V. L., & Capuzzo, V. M. S. (2021). Evaluation of the influence of the viscosity modifying admixture on the properties of self-compacting concrete. Revista Materia, 26(3), p. e13050. doi: 10.1590/S1517-707620210003.13050
- Dong, C., Huang, Y., Zhang, W., Tang, X., Gu, Y., & Feng, Y. (2023). Behavioral evaluation on the engineering properties of lignin-stabilized loess: Reuse of renewable materials. Construction and Building Materials, 369, p. 130599. doi: 10.1016/j.conbuildmat.2023.130599
- Dušek, J., Jerman, M., Podlena, M., Böhm, M., & Černý, R. (2021). Sustainable composite material based on surface-modified rape straw and environment-friendly adhesive. Construction and Building Materials, 300, p. e124036. doi: 10.1016/j. conbuildmat.2021.124036
- Dvorkin, L., Zhitkovsky, V., Lapovskaya, S., & Ribakov, Y. (2023). Investigation of the cementing efficiency of fly ash activated by microsilica in low-cement concrete. Materials (Basel, Switzerland), 16(21), p. e6859. doi: 10.3390/ma16216859
- El-Sayed, T. A., Abdallah, K. S., Ahmed, H. E., & El-Afandy, T. H. (2023). Structural behavior of ultra-high strength concrete columns reinforced with basalt bars under axial loading. International Journal of Concrete Structures and Materials, 17(1), pp. 1-20. doi: 10.1186/s40069-023-00600-9
- Faria Oliveira, T., de Carvalho, J. M. F., Castro Mendes, J., Zuqui Souza, G., Rezende Carvalho, V., & André Fiorotti Peixoto, R. (2022). Precast concrete sandwich panels (PCSP): An analytical review and evaluation of CO2 equivalent. Construction and Building Materials, 358(17), p. e129424. doi: 10.1016/j. conbuildmat.2022.129424
- Farzadnia, N., Pan, J., Khayat, K., & Wirquin, E. (2020). Effect of temperature on early-age properties of self-consolidating concrete equivalent mortar. RILEM Technical Letters, 5, pp. 114-122. doi: 10.21809/rilemtechlett.2020.105
- Fatemi, S., Bazaz, J. B., & Ziaee, S. A. (2021). The pros and cons of using calcium lignosulfonate as a recycled anti-aging additive on engineering properties of bituminous mastics. Case Studies in Construction Materials, 15, p. e00739. doi: 10.1016/j. cscm.2021.e00739
- Fernández, M. T., Orlandi, S., Codevilla, M., Piqué, T. M., & Manzanal, D. (2021). Performance of calcium lignosulfonate as a stabiliser of highly expansive clay. Transportation Geotechnics, 27, p. e100469. doi: 10.1016/j.trgeo.2020.100469
- González-Sánchez, J. F., Tasci, B., Fernández, J. M., Navarro-Blasco,Í, & Alvarez, J. I. (2020). Combination of polymeric superplasticizers water repellents and pozzolanic agents to improve air lime-based grouts for historic masonry repair. Polymers, 12 (4), p. e887. doi: 10.3390/polym12040887
- Grzeszczyk, S., Matuszek-Chmurowska, A., Vejmelková, E., & Černý, R. (2020). Reactive powder concrete containing basalt fibers: Strength, abrasion and porosity. Materials (Basel, Switzerland), 13(13), p. e2948. doi: 10.3390/ma13132948
- Hameed, A., Murtaza, A., Ibrahim, Y., Faheem, M., Ullah, A., & Hameed, I. (2022). Utilization of fly ash as a viscosity-modifying agent to produce cost-effective, self-compacting concrete: A sustainable solution. Sustainability, 14 (18), p. e11559. doi: 10.3390/su141811559
- Hashempour, M., Samani, A. A., & Heidari, A. (2021). Essential improvements in gypsum mortar characteristics. International Journal of Engineering, Transactions B: Applications, 34(2), pp. 319-325. doi: 10.5829/IJE.2021.34.02B.03
- He, B., Li, Y., Chen, J., Fu, M., Zhang, X., Li, W., Yu, J., & Zhu, L. (2023). Evaluation of UV aging resistance of bitumen containing lignosulfonate grafted layered double hydroxides. Construction and Building Materials, 403, p. 133026. doi: 10.1016/j. conbuildmat.2023.133026
- Hendi, A., Mostofinejad, D., Sedaghatdoost, A., Zohrabi, M., Naeimi, N., & Tavakolinia, A. (2019). Mix design of the green self-consolidating concrete: Incorporating the waste glass powder. Construction and Building Materials, 199, pp. 369-384. doi: 10.1016/j.conbuildmat.2018.12.020
- Hossein, A. H., AzariJafari, H., & Khoshnazar, R. (2022). The role of performance metrics in comparative LCA of concrete mixtures incorporating solid wastes: A critical review and guideline proposal. Waste Management, 140, pp. 40-54. doi: 10.1016/j. wasman.2022.01.010
- Hussein, F. M., Altai, S., & Sami, A. G. (2022). Workability adjustment and sensitivity of different fine cement mixtures to polycarboxylate ether-based superplasticizer. Journal of Applied Engineering Science, 20(2), pp. 432-439. doi: 10.5937/jaes0-34663
- Juang, C. U., & Kuo, W. T. (2023). Engineering properties of green and ecofriendly grouting materials with different sand filling ratios. Materials (Basel, Switzerland), 16(2), p. e837. doi: 10.3390/ma16020837
- Ke, G., & Zhang, J. (2020). Effects of retarding admixture, superplasticizer and supplementary cementitious material on the rheology and mechanical properties of high strength calcium sulfoaluminate cement paste. Journal of Advanced Concrete Technology, 18 (1), pp. 17-26. doi: 10.3151/jact.18.17
- Kohandelnia, M., Hosseinpoor, M., Yahia, A., & Belarbi, R. (2023). New insight on rheology of self-consolidating earth concrete (SCEC). Powder Technology, 424, p. 118561. doi: 10.1016/j. powtec.2023.118561
- Kong, T. W., Yang, H. M., Lee, H. S., & Yoon, C. B. (2021). Evaluations of all-in-one, polycarboxylate-based superplasticizer with viscosity modifying agents for the application of normal-strength, high-fluidity concrete. doi: 10.3390/app112311141
- Lee, T., & Lee, J. (2020). Evaluation of chloride resistance of earlystrength concrete using blended binder and polycarboxylate-based chemical-admixture. Applied Sciences 10(8), p. e2972. doi: 10.3390/app10082972
- Liao, Y., Shi, H., Zhang, S., Da, B., & Chen, D. (2021). Particle size effect of oyster shell on mortar: Experimental investigation and modeling. Materials (Basel, Switzerland), 14(22), p. 6813. doi: 10.3390/ma14226813
- Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ, 339, p. e2700. doi: 10.1136/bmj.b2700
- Li, T., Sun, X., Shi, F., Zhu, Z., Wang, D., Tian, H., et al. (2022). The mechanism of anticorrosion performance and mechanical property differences between seawater sea-sand and freshwater river-sand ultra-high-performance polymer cement mortar (UHPC). doi: 10.3390/polym14153105
- Liu, J., Liu, X., Chen, B., Feng, Z., Qin, J., & Wu, M., et al. (2022). High-performance naphthalene epoxy resins cured by catalyst for packaging materials. Materials Today Communications, 33, p. 104483. doi: 10.1016/j.mtcomm.2022.104483
- Luo, Z., & Zhi, T. (2023). Effects of different nanomaterials on the early performance of ultra-high performance concrete (UHPC): C–S–H seeds and nano-silica. Cement and Concrete Composites, 142, p. 105211. doi: 10.1016/j. cemconcomp.2023.105211
- Malik, M. W., & Rizwan, S. A. (2022). Utilization of acacia modesta gum powder as viscosity-modifying agent in self-compacting paste systems t. Engineering Proceedings, 22(1), pp. 1-7. doi: 10.3390/engproc2022022015
- Marshdi, Q. S. R., Al-Sallami, Z. H. A., & Zaichenko, N. M. (2020). Effect of multicomponent modifier on the properties of cement pastes formulated from selfcompacting concrete. Magazine of Civil Engineering 98(6), p. e9805. doi: 10.18720/MCE.98.5.
- Ma, M., Tam, V. W., Le, K. N., & Osei-Kyei, R. (2022). Factors affecting the price of recycled concrete: A critical review. Journal of Building Engineering, 46, p. 103743. doi: 10.1016/j. jobe.2021.103743
- Memiş, S., & Ramroom, A. A. (2023). Investigation of the use of waste mineral additives in ultra-high-performance concrete. Gradjevinar, 75(6), pp. 539-553. doi: 10.14256/JCE.3305.2021
- Merli, R., Preziosi, M., Acampora, A., Lucchetti, M. C., & Petrucci, E. (2020). Recycled fibers in reinforced concrete: A systematic literature review. Journal of Cleaner Production, p. e119207. 248(22). doi: 10.1016/j.jclepro.2019.119207
- Mo, Z., Wang, R., & Gao, X. (2020). Hydration and mechanical properties of UHPC matrix containing limestone and different levels of metakaolin. Construction and Building Materials, 256, p. 119454. doi: 10.1016/j.conbuildmat.2020.119454
- Muhammad, A., Thienel, K. C., & Scherb, S. (2023). Calcined clays from Nigeria – Properties and performance of supplementary cementitious materials suitable for producing level 1 concrete. Materials (Basel, Switzerland) 16(7), p. e2684. doi: 10.3390/ma16072684
- Myftarago, A., Bier, T. A., Qoku, E., Aliti, R., & Zogaj, M. (2023). Multi-response optimization on hydrated calcium aluminate rich ternary binders using Taguchi design of experiments and principal component analysis. doi: 10.3390/buildings13102494
- Navabi, D., Javidruzi, M., Hafezi, M. R., & Mosavi, A. (2021). The high-performance light transmitting concrete and experimental analysis of using polymethylmethacrylate optical fibers in it. Journal of Building Engineering, 38, p. 102076. doi: 10.1016/j. jobe.2020.102076
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., & Mulrow, C. D., et al. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), pp. 790-799. doi: 10.1016/j.recesp.2021.06.016
- Pott, U., Jacob, C., Jansen, D., Neubauer, J., & Stephan, D. (2020). Investigation of the incompatibilities of cement and superplasticizers and their influence on the rheological behavior. Materials (Basel, Switzerland) 13(4), p. e977. doi: 10.3390/ma13040977
- Rahim, O., Achoura, D., Benzerara, M., & Bascoulès-Perlot, C. (2021). Experimental contribution to the study of the physic-mechanical behavior and durability of high-performance concretes based on ternary binder (cement, silica fume and granulated blast furnace slag). doi: 10.3221/IGF-ESIS.59.23
- Ribero, A. V. S., et al. (2020). Performance evaluation of commercial superplasticizing additives based on polycarboxylate on the mechanical and microstructural properties of portland cement pastes. doi: 10.1590/S1517-707620200004.1203
- Robinson, J., & Srisanthi, V. G. (2022). Statistical analysis on mechanical behaviour of ternary blended high strength concrete. Cement wapno beton, 27(6), pp. 386-402. doi: 10.32047/CWB.2022.27.6.2
- Roshan, K., Choobbasti, A. J., & Kutanaei, S. S. (2020). Evaluation of the impact of fiber reinforcement on the durability of lignosulfonate stabilized clayey sand under wet-dry condition. Transportation Geotechnics, 23, p. 100359. doi: 10.1016/j. trgeo.2020.100359
- Roshan, K., Choobbasti, A. J., Kutanaei, S. S., & Fakhrabadi, A. (2022). The effect of adding polypropylene fibers on the freeze-thaw cycle durability of lignosulfonate stabilised clayey sand. Cold Regions Science and Technology, 193, p. e1747. p. 103418. doi: 10.1016/j.coldregions.2021.103418
- Sha, F., Gu, S., Diao, Y., Liu, P., Lou, D., & Hu, Y. (2022). Workability and mechanical properties of superplasticized microfine cement grouts. Materials (Basel, Switzerland), 15(5). doi: 10.3390/ma15051747
- Shang, H., & Sun, Z. (2019). PAHs (naphthalene) removal from stormwater runoff by organoclay amended pervious concrete. Construction and Building Materials, 200, pp. 170-180. doi: 10.1016/j.conbuildmat.2018.12.096
- Shi, M., Yin, G., Wei, P., Zhang, J., & Yang, Z. (2023). Mix proportion optimization and early strength development in modified foam concrete: An experimental study. Materials Research Express, 10 (6), p. e065507. doi: 10.1088/2053-1591/acdfac
- Siwiński, J., Szcześniak, A., Nasiłowska, B., Mierczyk, Z., Kubiak, K., & Stolarski, A. (2022). Effect of the mix composition with superplasticizer admixture on mechanical properties of high-strength concrete based on reactive powders. Archives of Civil Engineering, 68 (4), pp. 77-95. doi: 10.24425/ace.2022.143027
- Skutnik, Z., Sobolewski, M., & Koda, E. (2020). An experimental assessment of the water permeability of concrete with a superplasticizer and admixtures. Materials (Basel, Switzerland), 13 (24), p. 5624. doi: 10.3390/ma13245624
- Šoukal, F., Bocian, L., Novotný, R., Dlabajová, L., Šuleková, N., Hajzler, J., et al. (2023). The effects of silica fume and superplasticizer type on the properties and microstructure of reactive powder concrete. Materials (Basel, Switzerland) 16(20), p. e6670. doi: 10.3390/ma16206670
- Sun, X., Li, T., Shi, F., Liu, X., Zong, Y., Hou, B., et al. (2022). Sulphate corrosion mechanism of ultra-high-performance concrete (UHPC) prepared with seawater and sea sand. Polymers, 14 (5), p. e971. doi: 10.3390/polym14050971
- Suresh, S., Kumari, P., Mant Jha, J., Verma, S., Arisutha, S., & Lens, P. N. L. (2022). Sonocatalytic removal of naphthalene from an aqueous solution using ZnO nanoparticles. AQUA Water Infrastructure, Ecosystems and Society, 71 (9), pp. 1002-1015. doi: 10.2166/aqua.2022.042
- Teng, L., Jin, M., Du, J., & Khayat, K. H. (2024). Synergetic effect of viscosity modifying admixtures and polycarboxylate ether superplasticizer on key characteristics of thixotropic UHPC for bonded bridge deck overlay rehabilitation. Case Studies in Construction Materials, 20, p. e02739. doi: 10.1016/j. cscm.2023.e02739
- Tian, Y., Yuan, Q., Yang, C., Yang, K., Yu, L., & Zhang, M., et al. (2023). Insights into the efficiency loss of naphthalene superplasticizer in alkali-activated slag pastes. Journal of Building Engineering, 68, p. 106176. doi: 10.1016/j. jobe.2023.106176
- Vakili, A. H., Salimi, M., Lu, Y., Shamsi, M., & Nazari, Z. (2022). Strength and post-freeze-thaw behavior of a marl soil modified by lignosulfonate and polypropylene fiber: An environmentally friendly approach. Construction and Building Materials, 332, p. 127364. doi: 10.1016/j.conbuildmat.2022.127364
- Villasís-keever, M. Á, Rendón-macías, M. E., García, H., Mirandanovales, M. G., & Escamilla-núñez, A. (2020). Systematic review and meta-analysis as a support tools for research and clinical practice. Revista Alergia Mexico, 67(1), pp. 62-72. doi: 10.29262/ram.v67i1.733
- Yang, S., Bieliatynskyi, A., Trachevskyi, V., Shao, M., & Ta, M. (2023). Research of nano-modified plain cement concrete mixtures and cement-based concrete. International Journal of Concrete Structures and Materials, 17(1), 1-19. doi: 10.1186/s40069-023-00601-8
- Yang, W., Qu, T., Flury, M., Zhang, X., Gabriel, S., & Shang, J., et al. (2021b). PAHs sorption to biochar colloids changes their mobility over time. Journal of Hydrology, 603(Part A), p. 126839. doi: 10.1016/j.jhydrol.2021.126839
- Yang, Z., Liu, S., Yu, L., & Xu, L. (2021a). A comprehensive study on the hardening features and performance of self-compacting concrete with high-volume fly ash and slag. Materials (Basel, Switzerland), 14(15), p. 4286. doi: 10.3390/ma14154286
- Zhang, S., Zhou, Y., Sun, J., & Han, F. (2021). Effect of ultrafine metakaolin on the properties of mortar and concrete. Crystals, 11(6), p. e665. doi: 10.3390/cryst11060665
- Zhao, D., Watari, D., Ozawa, Y., Taniguchi, I., Suzuki, T., & Shimoda, Y., et al. (2023). Data-driven online energy management framework for HVAC systems: An experimental study. Applied Energy, 352, p. 121921. doi: 10.1016/j.apenergy.2023.121921
- Zhitkovsky, V., Dvorkin, L., Kochkarev, D., & Ribakov, Y. (2022). Using experimental statistical models for predicting strength and deformability of self-compacting concrete with ground blast-furnace slag. Materials (Basel, Switzerland) 15(12), p. e4110. doi: 10.3390/ma15124110
- Ziaee, S. A., Fatemi, S., Zarei, M., & Fini, E. H. (2023). Introduction of calcium lignosulfonate to delay aging in bituminous mixtures. Construction and Building Materials, 400, p. 132798. doi: 10.1016/j.conbuildmat.2023.132798