Have a personal or library account? Click to login
Influence of superplasticiser additives on the properties of high-performance concrete: a systematic review Cover

Influence of superplasticiser additives on the properties of high-performance concrete: a systematic review

Open Access
|Dec 2025

References

  1. Abdolpour, H., Niewiadomski, P., & Sadowski, Ł (2021). Recycling of steel fibres and spent equilibrium catalyst in ultra-high performance concrete: Literature review, research gaps, and future development. Construction and Building Materials, 309(19), p. e125147. doi: 10.1016/j.conbuildmat.2021.125147
  2. Arora, A., Yao, Y., Mobasher, B., & Neithalath, N. (2019). Fundamental insights into the compressive and flexural response of binder- and aggregate-optimized ultra-high performance concrete (UHPC). Cement and Concrete Composites, 98, pp. 1-13. doi: 10.1016/j.cemconcomp.2019.01.015
  3. Babaahmadi, A., Machner, A., Kunther, W., Figueira, J., Hemstad, P., & De Weerdt, K. (2022). Chloride binding in Portland composite cements containing metakaolin and silica fume. Cement and Concrete Research, 161, p. e 106924. doi: 10.1016/j.cemconres.2022.106924
  4. Bai, Y., Mei, S., Chan, C., & Li, Q. (2021a). Compressive behavior of large-size square PEN FRP-concrete-steel hybrid multi-tube concrete columns. Engineering Structures, 246, p. 113017. doi: 10.1016/j.engstruct.2021.113017
  5. Bai, Y. L., Yan, Z. W., Ozbakkaloglu, T., Gao, W. Y., & Zeng, J. J. (2021b). Mechanical behavior of large-rupture-strain (LRS) polyethylene naphthalene fiber bundles at different strain rates and temperatures. Construction and Building Materials, 297, p. 123786. doi: 10.1016/j.conbuildmat.2021.123786
  6. Barbieri, D. M., Hoff, I., & Ho, C. H. (2021). Crushed rocks stabilized with organosilane and lignosulfonate in pavement unbound layers: Repeated load triaxial tests. Frontiers of Structural and Civil Engineering, 15 (2), pp. 412-424. doi: 10.1007/s11709-021-0700-5
  7. Barbieri, D. M., Hoff, I., & Mørk, M. B. E. (2020). Organosilane and lignosulfonate as innovative stabilization techniques for crushed rocks used in road unbound layers. Transportation Geotechnics, 22. doi: 10.1016/j.trgeo.2019.100308
  8. Bílek, V., Kalina, L., & Novotný, R. (2023). Structural build-up and breakdown of alkali-activated slag pastes with different order of lignosulfonate and activator addition. Construction and Building Materials, 386, p. e131557. doi: 10.1016/j. conbuildmat.2023.131557
  9. Brisard, S., Serdar, M., & Monteiro, P. J. M. (2020). Multiscale x-ray tomography of cementitious materials: A review. Cement and Concrete Research, 128(35), p. e105824. doi: 10.1016/j. cemconres.2019.105824
  10. Cao, W., Yi, W., Yin, S., Peng, J., & Li, J. (2021). A novel low-density thermal insulation gypsum reinforced with superplasticizers. Construction and Building Materials, 278, p. 122421. doi: 10.1016/j.conbuildmat.2021.122421
  11. Chadegani, A. A., Salehi, H., Yunus, M., Farhadi, H., Fooladi, M., & Farhadi, M. (2013). A comparison between two main academic literature collections: Web of science and scopus databases. Asian Social Science, 9(5), pp. 18-26. doi: 10.5539/ass.v9n5p18
  12. Chen, W., Jin, R., Xu, Y., Wanatowski, D., Li, B., Yan, L., et al. (2019). Adopting recycled aggregates as sustainable construction materials: A review of the scientific literature. Construction and Building Materials, 218, pp. 483-496. doi: 10.1016/j. conbuildmat.2019.05.130
  13. Chu, S. H., Li, L., Shen, P. L., Lu, J. X., & Poon, C. S. (2022). Recycling of waste glass powder as paste replacement in green UHPFRC. Construction and Building Materials, 316, p. e125719. doi: 10.1016/j.conbuildmat.2021.125719
  14. de Oliveira Evaristo, W. F., de Almeida, V. L., & Capuzzo, V. M. S. (2021). Evaluation of the influence of the viscosity modifying admixture on the properties of self-compacting concrete. Revista Materia, 26(3), p. e13050. doi: 10.1590/S1517-707620210003.13050
  15. Dong, C., Huang, Y., Zhang, W., Tang, X., Gu, Y., & Feng, Y. (2023). Behavioral evaluation on the engineering properties of lignin-stabilized loess: Reuse of renewable materials. Construction and Building Materials, 369, p. 130599. doi: 10.1016/j.conbuildmat.2023.130599
  16. Dušek, J., Jerman, M., Podlena, M., Böhm, M., & Černý, R. (2021). Sustainable composite material based on surface-modified rape straw and environment-friendly adhesive. Construction and Building Materials, 300, p. e124036. doi: 10.1016/j. conbuildmat.2021.124036
  17. Dvorkin, L., Zhitkovsky, V., Lapovskaya, S., & Ribakov, Y. (2023). Investigation of the cementing efficiency of fly ash activated by microsilica in low-cement concrete. Materials (Basel, Switzerland), 16(21), p. e6859. doi: 10.3390/ma16216859
  18. El-Sayed, T. A., Abdallah, K. S., Ahmed, H. E., & El-Afandy, T. H. (2023). Structural behavior of ultra-high strength concrete columns reinforced with basalt bars under axial loading. International Journal of Concrete Structures and Materials, 17(1), pp. 1-20. doi: 10.1186/s40069-023-00600-9
  19. Faria Oliveira, T., de Carvalho, J. M. F., Castro Mendes, J., Zuqui Souza, G., Rezende Carvalho, V., & André Fiorotti Peixoto, R. (2022). Precast concrete sandwich panels (PCSP): An analytical review and evaluation of CO2 equivalent. Construction and Building Materials, 358(17), p. e129424. doi: 10.1016/j. conbuildmat.2022.129424
  20. Farzadnia, N., Pan, J., Khayat, K., & Wirquin, E. (2020). Effect of temperature on early-age properties of self-consolidating concrete equivalent mortar. RILEM Technical Letters, 5, pp. 114-122. doi: 10.21809/rilemtechlett.2020.105
  21. Fatemi, S., Bazaz, J. B., & Ziaee, S. A. (2021). The pros and cons of using calcium lignosulfonate as a recycled anti-aging additive on engineering properties of bituminous mastics. Case Studies in Construction Materials, 15, p. e00739. doi: 10.1016/j. cscm.2021.e00739
  22. Fernández, M. T., Orlandi, S., Codevilla, M., Piqué, T. M., & Manzanal, D. (2021). Performance of calcium lignosulfonate as a stabiliser of highly expansive clay. Transportation Geotechnics, 27, p. e100469. doi: 10.1016/j.trgeo.2020.100469
  23. González-Sánchez, J. F., Tasci, B., Fernández, J. M., Navarro-Blasco,Í, & Alvarez, J. I. (2020). Combination of polymeric superplasticizers water repellents and pozzolanic agents to improve air lime-based grouts for historic masonry repair. Polymers, 12 (4), p. e887. doi: 10.3390/polym12040887
  24. Grzeszczyk, S., Matuszek-Chmurowska, A., Vejmelková, E., & Černý, R. (2020). Reactive powder concrete containing basalt fibers: Strength, abrasion and porosity. Materials (Basel, Switzerland), 13(13), p. e2948. doi: 10.3390/ma13132948
  25. Hameed, A., Murtaza, A., Ibrahim, Y., Faheem, M., Ullah, A., & Hameed, I. (2022). Utilization of fly ash as a viscosity-modifying agent to produce cost-effective, self-compacting concrete: A sustainable solution. Sustainability, 14 (18), p. e11559. doi: 10.3390/su141811559
  26. Hashempour, M., Samani, A. A., & Heidari, A. (2021). Essential improvements in gypsum mortar characteristics. International Journal of Engineering, Transactions B: Applications, 34(2), pp. 319-325. doi: 10.5829/IJE.2021.34.02B.03
  27. He, B., Li, Y., Chen, J., Fu, M., Zhang, X., Li, W., Yu, J., & Zhu, L. (2023). Evaluation of UV aging resistance of bitumen containing lignosulfonate grafted layered double hydroxides. Construction and Building Materials, 403, p. 133026. doi: 10.1016/j. conbuildmat.2023.133026
  28. Hendi, A., Mostofinejad, D., Sedaghatdoost, A., Zohrabi, M., Naeimi, N., & Tavakolinia, A. (2019). Mix design of the green self-consolidating concrete: Incorporating the waste glass powder. Construction and Building Materials, 199, pp. 369-384. doi: 10.1016/j.conbuildmat.2018.12.020
  29. Hossein, A. H., AzariJafari, H., & Khoshnazar, R. (2022). The role of performance metrics in comparative LCA of concrete mixtures incorporating solid wastes: A critical review and guideline proposal. Waste Management, 140, pp. 40-54. doi: 10.1016/j. wasman.2022.01.010
  30. Hussein, F. M., Altai, S., & Sami, A. G. (2022). Workability adjustment and sensitivity of different fine cement mixtures to polycarboxylate ether-based superplasticizer. Journal of Applied Engineering Science, 20(2), pp. 432-439. doi: 10.5937/jaes0-34663
  31. Juang, C. U., & Kuo, W. T. (2023). Engineering properties of green and ecofriendly grouting materials with different sand filling ratios. Materials (Basel, Switzerland), 16(2), p. e837. doi: 10.3390/ma16020837
  32. Ke, G., & Zhang, J. (2020). Effects of retarding admixture, superplasticizer and supplementary cementitious material on the rheology and mechanical properties of high strength calcium sulfoaluminate cement paste. Journal of Advanced Concrete Technology, 18 (1), pp. 17-26. doi: 10.3151/jact.18.17
  33. Kohandelnia, M., Hosseinpoor, M., Yahia, A., & Belarbi, R. (2023). New insight on rheology of self-consolidating earth concrete (SCEC). Powder Technology, 424, p. 118561. doi: 10.1016/j. powtec.2023.118561
  34. Kong, T. W., Yang, H. M., Lee, H. S., & Yoon, C. B. (2021). Evaluations of all-in-one, polycarboxylate-based superplasticizer with viscosity modifying agents for the application of normal-strength, high-fluidity concrete. doi: 10.3390/app112311141
  35. Lee, T., & Lee, J. (2020). Evaluation of chloride resistance of earlystrength concrete using blended binder and polycarboxylate-based chemical-admixture. Applied Sciences 10(8), p. e2972. doi: 10.3390/app10082972
  36. Liao, Y., Shi, H., Zhang, S., Da, B., & Chen, D. (2021). Particle size effect of oyster shell on mortar: Experimental investigation and modeling. Materials (Basel, Switzerland), 14(22), p. 6813. doi: 10.3390/ma14226813
  37. Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ, 339, p. e2700. doi: 10.1136/bmj.b2700
  38. Li, T., Sun, X., Shi, F., Zhu, Z., Wang, D., Tian, H., et al. (2022). The mechanism of anticorrosion performance and mechanical property differences between seawater sea-sand and freshwater river-sand ultra-high-performance polymer cement mortar (UHPC). doi: 10.3390/polym14153105
  39. Liu, J., Liu, X., Chen, B., Feng, Z., Qin, J., & Wu, M., et al. (2022). High-performance naphthalene epoxy resins cured by catalyst for packaging materials. Materials Today Communications, 33, p. 104483. doi: 10.1016/j.mtcomm.2022.104483
  40. Luo, Z., & Zhi, T. (2023). Effects of different nanomaterials on the early performance of ultra-high performance concrete (UHPC): C–S–H seeds and nano-silica. Cement and Concrete Composites, 142, p. 105211. doi: 10.1016/j. cemconcomp.2023.105211
  41. Malik, M. W., & Rizwan, S. A. (2022). Utilization of acacia modesta gum powder as viscosity-modifying agent in self-compacting paste systems t. Engineering Proceedings, 22(1), pp. 1-7. doi: 10.3390/engproc2022022015
  42. Marshdi, Q. S. R., Al-Sallami, Z. H. A., & Zaichenko, N. M. (2020). Effect of multicomponent modifier on the properties of cement pastes formulated from selfcompacting concrete. Magazine of Civil Engineering 98(6), p. e9805. doi: 10.18720/MCE.98.5.
  43. Ma, M., Tam, V. W., Le, K. N., & Osei-Kyei, R. (2022). Factors affecting the price of recycled concrete: A critical review. Journal of Building Engineering, 46, p. 103743. doi: 10.1016/j. jobe.2021.103743
  44. Memiş, S., & Ramroom, A. A. (2023). Investigation of the use of waste mineral additives in ultra-high-performance concrete. Gradjevinar, 75(6), pp. 539-553. doi: 10.14256/JCE.3305.2021
  45. Merli, R., Preziosi, M., Acampora, A., Lucchetti, M. C., & Petrucci, E. (2020). Recycled fibers in reinforced concrete: A systematic literature review. Journal of Cleaner Production, p. e119207. 248(22). doi: 10.1016/j.jclepro.2019.119207
  46. Mo, Z., Wang, R., & Gao, X. (2020). Hydration and mechanical properties of UHPC matrix containing limestone and different levels of metakaolin. Construction and Building Materials, 256, p. 119454. doi: 10.1016/j.conbuildmat.2020.119454
  47. Muhammad, A., Thienel, K. C., & Scherb, S. (2023). Calcined clays from Nigeria – Properties and performance of supplementary cementitious materials suitable for producing level 1 concrete. Materials (Basel, Switzerland) 16(7), p. e2684. doi: 10.3390/ma16072684
  48. Myftarago, A., Bier, T. A., Qoku, E., Aliti, R., & Zogaj, M. (2023). Multi-response optimization on hydrated calcium aluminate rich ternary binders using Taguchi design of experiments and principal component analysis. doi: 10.3390/buildings13102494
  49. Navabi, D., Javidruzi, M., Hafezi, M. R., & Mosavi, A. (2021). The high-performance light transmitting concrete and experimental analysis of using polymethylmethacrylate optical fibers in it. Journal of Building Engineering, 38, p. 102076. doi: 10.1016/j. jobe.2020.102076
  50. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., & Mulrow, C. D., et al. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), pp. 790-799. doi: 10.1016/j.recesp.2021.06.016
  51. Pott, U., Jacob, C., Jansen, D., Neubauer, J., & Stephan, D. (2020). Investigation of the incompatibilities of cement and superplasticizers and their influence on the rheological behavior. Materials (Basel, Switzerland) 13(4), p. e977. doi: 10.3390/ma13040977
  52. Rahim, O., Achoura, D., Benzerara, M., & Bascoulès-Perlot, C. (2021). Experimental contribution to the study of the physic-mechanical behavior and durability of high-performance concretes based on ternary binder (cement, silica fume and granulated blast furnace slag). doi: 10.3221/IGF-ESIS.59.23
  53. Ribero, A. V. S., et al. (2020). Performance evaluation of commercial superplasticizing additives based on polycarboxylate on the mechanical and microstructural properties of portland cement pastes. doi: 10.1590/S1517-707620200004.1203
  54. Robinson, J., & Srisanthi, V. G. (2022). Statistical analysis on mechanical behaviour of ternary blended high strength concrete. Cement wapno beton, 27(6), pp. 386-402. doi: 10.32047/CWB.2022.27.6.2
  55. Roshan, K., Choobbasti, A. J., & Kutanaei, S. S. (2020). Evaluation of the impact of fiber reinforcement on the durability of lignosulfonate stabilized clayey sand under wet-dry condition. Transportation Geotechnics, 23, p. 100359. doi: 10.1016/j. trgeo.2020.100359
  56. Roshan, K., Choobbasti, A. J., Kutanaei, S. S., & Fakhrabadi, A. (2022). The effect of adding polypropylene fibers on the freeze-thaw cycle durability of lignosulfonate stabilised clayey sand. Cold Regions Science and Technology, 193, p. e1747. p. 103418. doi: 10.1016/j.coldregions.2021.103418
  57. Sha, F., Gu, S., Diao, Y., Liu, P., Lou, D., & Hu, Y. (2022). Workability and mechanical properties of superplasticized microfine cement grouts. Materials (Basel, Switzerland), 15(5). doi: 10.3390/ma15051747
  58. Shang, H., & Sun, Z. (2019). PAHs (naphthalene) removal from stormwater runoff by organoclay amended pervious concrete. Construction and Building Materials, 200, pp. 170-180. doi: 10.1016/j.conbuildmat.2018.12.096
  59. Shi, M., Yin, G., Wei, P., Zhang, J., & Yang, Z. (2023). Mix proportion optimization and early strength development in modified foam concrete: An experimental study. Materials Research Express, 10 (6), p. e065507. doi: 10.1088/2053-1591/acdfac
  60. Siwiński, J., Szcześniak, A., Nasiłowska, B., Mierczyk, Z., Kubiak, K., & Stolarski, A. (2022). Effect of the mix composition with superplasticizer admixture on mechanical properties of high-strength concrete based on reactive powders. Archives of Civil Engineering, 68 (4), pp. 77-95. doi: 10.24425/ace.2022.143027
  61. Skutnik, Z., Sobolewski, M., & Koda, E. (2020). An experimental assessment of the water permeability of concrete with a superplasticizer and admixtures. Materials (Basel, Switzerland), 13 (24), p. 5624. doi: 10.3390/ma13245624
  62. Šoukal, F., Bocian, L., Novotný, R., Dlabajová, L., Šuleková, N., Hajzler, J., et al. (2023). The effects of silica fume and superplasticizer type on the properties and microstructure of reactive powder concrete. Materials (Basel, Switzerland) 16(20), p. e6670. doi: 10.3390/ma16206670
  63. Sun, X., Li, T., Shi, F., Liu, X., Zong, Y., Hou, B., et al. (2022). Sulphate corrosion mechanism of ultra-high-performance concrete (UHPC) prepared with seawater and sea sand. Polymers, 14 (5), p. e971. doi: 10.3390/polym14050971
  64. Suresh, S., Kumari, P., Mant Jha, J., Verma, S., Arisutha, S., & Lens, P. N. L. (2022). Sonocatalytic removal of naphthalene from an aqueous solution using ZnO nanoparticles. AQUA Water Infrastructure, Ecosystems and Society, 71 (9), pp. 1002-1015. doi: 10.2166/aqua.2022.042
  65. Teng, L., Jin, M., Du, J., & Khayat, K. H. (2024). Synergetic effect of viscosity modifying admixtures and polycarboxylate ether superplasticizer on key characteristics of thixotropic UHPC for bonded bridge deck overlay rehabilitation. Case Studies in Construction Materials, 20, p. e02739. doi: 10.1016/j. cscm.2023.e02739
  66. Tian, Y., Yuan, Q., Yang, C., Yang, K., Yu, L., & Zhang, M., et al. (2023). Insights into the efficiency loss of naphthalene superplasticizer in alkali-activated slag pastes. Journal of Building Engineering, 68, p. 106176. doi: 10.1016/j. jobe.2023.106176
  67. Vakili, A. H., Salimi, M., Lu, Y., Shamsi, M., & Nazari, Z. (2022). Strength and post-freeze-thaw behavior of a marl soil modified by lignosulfonate and polypropylene fiber: An environmentally friendly approach. Construction and Building Materials, 332, p. 127364. doi: 10.1016/j.conbuildmat.2022.127364
  68. Villasís-keever, M. Á, Rendón-macías, M. E., García, H., Mirandanovales, M. G., & Escamilla-núñez, A. (2020). Systematic review and meta-analysis as a support tools for research and clinical practice. Revista Alergia Mexico, 67(1), pp. 62-72. doi: 10.29262/ram.v67i1.733
  69. Yang, S., Bieliatynskyi, A., Trachevskyi, V., Shao, M., & Ta, M. (2023). Research of nano-modified plain cement concrete mixtures and cement-based concrete. International Journal of Concrete Structures and Materials, 17(1), 1-19. doi: 10.1186/s40069-023-00601-8
  70. Yang, W., Qu, T., Flury, M., Zhang, X., Gabriel, S., & Shang, J., et al. (2021b). PAHs sorption to biochar colloids changes their mobility over time. Journal of Hydrology, 603(Part A), p. 126839. doi: 10.1016/j.jhydrol.2021.126839
  71. Yang, Z., Liu, S., Yu, L., & Xu, L. (2021a). A comprehensive study on the hardening features and performance of self-compacting concrete with high-volume fly ash and slag. Materials (Basel, Switzerland), 14(15), p. 4286. doi: 10.3390/ma14154286
  72. Zhang, S., Zhou, Y., Sun, J., & Han, F. (2021). Effect of ultrafine metakaolin on the properties of mortar and concrete. Crystals, 11(6), p. e665. doi: 10.3390/cryst11060665
  73. Zhao, D., Watari, D., Ozawa, Y., Taniguchi, I., Suzuki, T., & Shimoda, Y., et al. (2023). Data-driven online energy management framework for HVAC systems: An experimental study. Applied Energy, 352, p. 121921. doi: 10.1016/j.apenergy.2023.121921
  74. Zhitkovsky, V., Dvorkin, L., Kochkarev, D., & Ribakov, Y. (2022). Using experimental statistical models for predicting strength and deformability of self-compacting concrete with ground blast-furnace slag. Materials (Basel, Switzerland) 15(12), p. e4110. doi: 10.3390/ma15124110
  75. Ziaee, S. A., Fatemi, S., Zarei, M., & Fini, E. H. (2023). Introduction of calcium lignosulfonate to delay aging in bituminous mixtures. Construction and Building Materials, 400, p. 132798. doi: 10.1016/j.conbuildmat.2023.132798
DOI: https://doi.org/10.2478/otmcj-2025-0015 | Journal eISSN: 1847-6228 | Journal ISSN: 1847-5450
Language: English
Page range: 260 - 278
Submitted on: Dec 11, 2024
|
Accepted on: Oct 27, 2025
|
Published on: Dec 31, 2025
Published by: University of Zagreb
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 María Yazmín Abril-Fernández, Óscar Gutiérrez-Junco, Juan José Alarcon, published by University of Zagreb
This work is licensed under the Creative Commons Attribution 4.0 License.