Have a personal or library account? Click to login
Automated and adaptable construction work scheduling: a roadmap Cover

References

  1. Abba, T., Afolabi, A. O., Ajibola, P., & Olanrewaju, P. (2021). Digital technologies and construction planning. IOP Conference Series: Materials Science and Engineering, 1107, p. 012139. doi: 10.1088/1757-899X/1107/1/012139
  2. Abbasi, S., Taghizade, K., & Noorzai, E. (2020). BIM-based combination of Takt time and discrete event simulation for implementing just in time in construction scheduling under constraints. Journal of Construction Engineering and Management, 146, p. 04020143. doi: 10.1061/(ASCE)CO.1943-7862.0001940
  3. Abdelmegid, M. A., González, V. A., O’Sullivan, M., Walker, C. G., Poshdar, M., & Alarcón, L. F. (2021). Exploring the links between simulation modelling and construction production planning and control: A case study on the last planner system. Production Planning & Control, 34(5), pp. 459-476. doi: 10.1080/09537287.2021.1934588
  4. Abuwarda, Z., & Hegazy, T. (2016). Work-package planning and schedule optimization for projects with evolving constraints. Journal of Computing in Civil Engineering, 30(6), 04016022. doi: 10.1061/(asce)cp.1943-5487.0000587
  5. Agrama, F. A. (2014). Multi-objective genetic optimization for scheduling a multi-storey building. Automation in Construction, 44, pp. 119-128. doi: 10.1016/j.autcon.2014.04.005
  6. Ahuja, V., & Thiruvengadam, V. (2004). Project scheduling and monitoring: Current research status. Construction Innovation, 4, pp. 19-31. doi: 10.1108/14714170410814980
  7. Altaf, M. S., Hashisho, Z., & Al-Hussein, M. (2014). A method for integrating occupational indoor air quality with building information modeling for scheduling construction activities. Canadian Journal of Civil Engineering, 41, pp. 245-251. doi: 10.1139/cjce-2013-0230
  8. Aminbakhsh, S., & Ahmed, A. (2023). Optimization-based scheduling of construction projects with generalized precedence relationships: A real-life case study. Scientia Iranica, 31 (19), pp. 1809-1824. doi: 10.24200/sci.2023.59493.6275
  9. Anagnostopoulos, K., & Koulinas, G. (2012). Resource-constrained critical path scheduling by a GRASP-based hyperheuristic. Journal of Computing in Civil Engineering, 26, pp. 204-213. doi: 10.1061/(asce)cp.1943-5487.0000116
  10. Andreea, G. (2022). Building information modelling (BIM) and engineering evolution in a digital world. In: Presented at the 8th International Scientific Conference ERAZ – Knowledge based Sustainable Development. pp. 153-161. doi: 10.31410/ERAZ.2022.153
  11. Ashuri, B., & Tavakolan, M. (2015). Shuffled frog-leaping model for solving time-cost-resource optimization problems in construction project planning. Journal of Computing in Civil Engineering, 29, p. 04014026. doi: 10.1061/(ASCE)CP.1943-5487.0000315
  12. Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020). Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies, 1, pp. 377-386. doi: 10.1162/qss_a_00019
  13. Ballard, H. G. (2000). The last planner system of production control (Doctoral dissertation, University of Birmingham).
  14. Ballesteros-Pérez, P., Smith, S. T., Lloyd-Papworth, J. G., & Cooke, P. (2018). Incorporating the effect of weather in construction scheduling and management with sine wave curves: Application in the United Kingdom. Construction Management and Economics, 36, pp. 666-682. doi: 10.1080/01446193.2018.1478109
  15. Banihashemi, S., Khalilzadeh, M., Antucheviciene, J., & Šaparauskas, J. (2021). Trading off time–cost–quality in construction project scheduling problems with fuzzy SWARA–TOPSIS approach. Buildings, 11, p. 387. doi: 10.3390/buildings11090387
  16. Begić, H., Galić, M., & Dolaček-Alduk, Z. (2022). Digitalization and automation in construction project’s life-cycle: A review. ITcon, 27, pp. 441-460. doi: 10.36680/j.itcon.2022.021
  17. Begić, H., Galić, M., & Klanšek, U. (2024). Active BIM system for optimized multi-project ready-mix-concrete delivery. ECAM, 31, pp. 5057-5084. doi: 10.1108/ecam-11-2022-1064
  18. Behnam, A., Harfield, T., & Kenley, R. (2016). Construction management scheduling and control: The familiar historical overview. MATEC Web of Conferences, 66, p. 00101. doi: 10.1051/matecconf/20166600101
  19. Chang, H. K., Yu, W. D., & Cheng, S. T. (2017), “A risk-based critical path scheduling method (II): A visual approach system using BIM”, In ISARC, Proceedings of the International Symposium on Automation and Robotics in Construction (Vol. 34). IAARC Publications. pp. 527-535. doi: https://doi.org/10.22260/ISARC2017/0073
  20. Chen, S.-M., Griffis, F. H. (Bud), Chen, P.-H., & Chang, L.-M. (2012). Simulation and analytical techniques for construction resource planning and scheduling. Automation in Construction, 21, pp. 99-113. doi: 10.1016/j.autcon.2011.05.018
  21. Choong, M. K., Galgani, F., Dunn, A. G., & Tsafnat, G. (2014). Automatic evidence retrieval for systematic reviews. Journal of Medical Internet Research, 16, p. e223. doi: 10.2196/jmir.3369
  22. Chua, D. K. H., Nguyen, T. Q., & Yeoh, K. W. (2013). Automated construction sequencing and scheduling from functional requirements. Automation in Construction, 35, pp. 79-88. doi: 10.1016/j.autcon.2013.03.002
  23. de Soto, B. G., Rosarius, A., Rieger, J., Chen, Q., & Adey, B. T. (2017). Using a Tabu-search algorithm and 4D models to improve construction project schedules. Procedia Engineering, 196, pp. 698-705. doi: 10.1016/j.proeng.2017.07.236
  24. Desgagné-Lebeuf, A., Lehoux, N., & Beauregard, R. (2022). Scheduling tools for the construction industry: Overview and decision support system for tool selection. International Journal of Construction Management, 22, pp. 2687-2698. doi: 10.1080/15623599.2020.1819583
  25. Desgagné-Lebeuf, A., Lehoux, N., Beauregard, R., & Desgagné-Lebeuf, G. (2019). Computer-assisted scheduling tools in the construction industry: A systematic literature review. IFAC-PapersOnLine, 52, pp. 1843-1848. doi: 10.1016/j. ifacol.2019.11.470
  26. Ding, H., Zhuang, C., & Liu, J. (2023). Extensions of the resource-constrained project scheduling problem. Automation in Construction, 153, p. 104958. doi: 10.1016/j. autcon.2023.104958
  27. Dong, N., Ge, D., Fischer, M., & Haddad, Z. (2012). A genetic algorithm-based method for look-ahead scheduling in the finishing phase of construction projects. Advanced Engineering Informatics, 26, pp. 737-748. doi: 10.1016/j.aei.2012.03.004
  28. Egwim, C. N., Alaka, H., Demir, E., Balogun, H., & Ajayi, S. (2023). Systematic review of critical drivers for delay risk prediction: Towards a conceptual framework for BIM-based construction projects. FEBE, 3, pp. 16-31. doi: 10.1108/FEBE-05-2022-0017
  29. ElMenshawy, M., & Marzouk, M. (2021). Automated BIM schedule generation approach for solving time–cost trade-off problems. Engineering, Construction and Architectural Management, 28, pp. 3346-3367. doi: 10.1108/ECAM-08-2020-0652
  30. Etges, B. M., Reck, R. H., Fireman, M. T., Rodrigues, J. L., & Isatto, E. L. (2020). Using BIM with the last planner® system to improve constraints analysis. In: Presented at the 28th Annual Conference of the International Group for Lean Construction (IGLC), Berkeley, California, USA, pp. 493-504. doi: 10.24928/2020/0060
  31. Faghihi, V., Nejat, A., Reinschmidt, K. F., & Kang, J. H. (2015). Automation in construction scheduling: A review of the literature. The International Journal of Advanced Manufacturing Technology, 81, pp. 1845-1856. doi: 10.1007/s00170-015-7339-0
  32. Faghihi, V., Reinschmidt, K. F., & Kang, J. H. (2014). Construction scheduling using genetic algorithm based on building information model. Expert Systems with Applications, 41, pp. 7565-7578. doi: 10.1016/j.eswa.2014.05.047
  33. Fahmy, A., Hassan, T., Bassioni, H., & McCaffer, R. (2019). Dynamic scheduling model for the construction industry. BEPAM, 10, pp. 313-330. doi: 10.1108/BEPAM-02-2019-0021
  34. Fan, S.-L., Chong, H.-Y., Hung, T.-W., & Wang, Y.-C. (2016). Cost-based scheduling method using object-oriented approach. Automation in Construction, 65, pp. 65-77. doi: 10.1016/j.autcon.2016.01.007
  35. Fazeli, A., Banihashemi, S., Hajirasouli, A., & Mohandes, S. R. (2024). Automated 4D BIM development: The resource specification and optimization approach. ECAM, 31, pp. 1896-1922. doi: 10.1108/ECAM-07-2022-0665
  36. Feng, C.-W., Chen, Y.-J., & Huang, J.-R. (2010). Using the MD CAD model to develop the time–cost integrated schedule for construction projects. Automation in Construction, 19, pp. 347-356. doi: 10.1016/j.autcon.2009.12.009
  37. Feng, X., Zhang, J., Li, R., & Huang, X. (2024). Multi-objective optimization of airport runway construction schedule considering activity overlapping based on BIM and genetic algorithm. In: Chinese Society of Aeronautics and Astronautics (ed.), Proceedings of the 6th China Aeronautical Science and Technology Conference, Lecture Notes in Mechanical Engineering, Springer Nature Singapore, Singapore, pp. 244-253. doi: 10.1007/978-981-99-8864-8_23
  38. Flanagan, R. (2018). BIM’s complexity and ambiguity – BIM v. paper architecture. In: eCAADe Proceedings. Presented at the eCAADe 2018: Computing for a better tomorrow, eCAADe, Łódź, Poland, pp. 265-270. doi: 10.52842/conf.ecaade.2018.1.265
  39. Francis, A. (2019). Chronographical spatiotemporal scheduling optimization for building projects. Frontiers in Built Environment, 36(5). doi: 10.3389/fbuil.2019.00036
  40. Galić & Klanšek (2023) “Active BIM in Optimization-Supported Construction Project Management: Achievements, Challenges and Applications”, in Vrečko, I., Gajšek, B. (Ed.), The Future of Project Management: Adapting to Modern Needs, Cambridge Scholars Publishing, Newcastle upon Tyne, pp. 70-118.
  41. Gelisen, G., & Griffis, F. H. (Bud) (2014). Automated productivity-based schedule animation: Simulation-based approach to time-cost trade-off analysis. Journal of Construction Engineering and Management, 140, p. B4013007. doi: 10.1061/(ASCE)CO.1943-7862.0000674
  42. Getuli, V., & Capone, P. (2018). Computational workspaces management: A workflow to integrate workspaces dynamic planning with 4D BIM. In: Presented at the 34th International Symposium on Automation and Robotics in Construction, Taipei, Taiwan. doi: 10.22260/ISARC2018/0155
  43. Golizadeh, H., Sadeghifam, A. N., Aadal, H., & Majid, M. Z. A. (2016). Automated tool for predicting duration of construction activities in tropical countries. KSCE Journal of Civil Engineering, 20, pp. 12-22. doi: 10.1007/s12205-015-0263-x
  44. Golmaei, S. M., Vahidi, J., & Jamshidi, M. (2025). Whale algorithm for schedule optimization of construction projects employing building information modeling. Engineering Reports, 7, p. e70022. doi: 10.1002/eng2.70022
  45. Hansen, S., Fassa, F., & Wijaya, S. (2023). Factors influencing scheduling activities of construction projects. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 15, p. 06522004. doi: 10.1061/(ASCE)LA.1943-4170.0000594
  46. Hassan, A., El-Rayes, K., & Attalla, M. (2023). Stochastic scheduling optimization of repetitive construction projects to minimize project duration and cost. International Journal of Construction Management, 23, pp. 1447-1456. doi: 10.1080/15623599.2021.1975078
  47. He, C., Liu, M., Alves, T., da, C. L., Scala, N. M., & Hsiang, S. M. (2022). Prioritizing collaborative scheduling practices based on their impact on project performance. Construction Management and Economics, 40, pp. 618-637. doi: 10.1080/01446193.2022.2048042
  48. Hong, Y., Xie, H., Agapaki, E., & Brilakis, I. (2023). Graph-based automated construction scheduling without the use of BIM. Journal of Construction Engineering and Management, 149, p. 05022020. doi: 10.1061/JCEMD4.COENG-12687
  49. Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Artificial intelligence applications for industry 4.0: A literature-based study. Journal of Industrial Integration and Management, 7, pp. 83-111. doi: 10.1142/s2424862221300040
  50. Jiang, S., Yang, B., & Liu, B. (2025). Precast components on-site construction planning and scheduling method based on a novel deep learning integrated multi-agent system. Journal of Building Engineering, 102, p. 111907. doi: 10.1016/j. jobe.2025.111907
  51. Joo, B. J., Chua, T. J., Cai, T. X., & Chua, P. C. (2019). Coordination-based reactive resource-constrained project scheduling. Procedia CIRP, 81, pp. 51-56. doi: 10.1016/j.procir.2019.03.010
  52. Karshenas, S., & Sharma, A. (2010). Visually scheduling construction projects. In: Construction Research Congress 2010. Presented at the Construction Research Congress 2010, American Society of Civil Engineers, Banff, Alberta, Canada, pp. 490-499. doi: 10.1061/41109(373)49
  53. Kim, H., Anderson, K., Lee, S., & Hildreth, J. (2013). Generating construction schedules through automatic data extraction using open BIM (building information modeling) technology. Automation in Construction, 35, pp. 285-295. doi: 10.1016/j. autcon.2013.05.020
  54. Kim, H., Shen, Z., Moon, H., Ju, K., & Choi, W. (2016). Developing a 3D intelligent object model for the application of construction planning/simulation in a highway project. KSCE Journal of Civil Engineering, 20, pp. 538-548. doi: 10.1007/s12205-015-0463-4
  55. Kim, K., Park, J., & Cho, C. (2020). Framework for automated generation of constructible steel erection sequences using structural information of static indeterminacy variation in BIM. KSCE Journal of Civil Engineering, 24, pp. 3169-3178. doi: 10.1007/s12205-020-0163-6
  56. Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele University 33, 1-26.
  57. Kleck, W. (1982). Scheduling game. Lawrence Livermore National Lab., CA, USA.
  58. Konig, M., Koch, C., Habenicht, I., & Spieckermann, S. (2012). Intelligent BIM-based construction scheduling using discrete event simulation. In: Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC). Presented at the 2012 Winter Simulation Conference - (WSC 2012), IEEE, Berlin, Germany, pp. 1-12. doi: 10.1109/WSC.2012.6465232
  59. Kostrzewa-Demczuk, P., & Rogalska, M. (2024). Scheduling with the Probabilistic Coupling Method II (PTCM II)-assuming continuity of work on the working sectors. Archives of Civil Engineering, 70 (4), pp. 505-520. doi: 10.24425/ace.2024.151906
  60. Lehtovaara, J., Seppänen, O., & Peltokorpi, A. (2022). Improving construction management with decentralised production planning and control: Exploring the production crew and manager perspectives through a multi-method approach. Construction Management and Economics, 40, pp. 254-277. doi: 10.1080/01446193.2022.2039399
  61. Le, C., & Jeong, H. D., Grau D., Tang P., El Asmar M. (2020). Artificial intelligence framework for developing a critical path schedule using historical daily work report data. In: Grau D., Tang P., & El Asmar M. (eds.), Construction Research Congress 2020: Project Management and Controls, Materials, and Contracts. American Society of Civil Engineers, Reston, VA, pp. 565-573.
  62. Li, B., Schultz, C., Melzner, J., Golovina, O., & Teizer, J. (2020). Safe and lean location-based construction scheduling. In: ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction. IAARC Publications, pp. 1409-1416.
  63. Li, Y., Wu, J., Hao, Y., Gao, Y., Chai, R., Chai, S., et al. (2024). Process scheduling for prefabricated construction based on multi-objective optimization algorithm. Automation in Construction, 168, p. 105809. doi: 10.1016/j.autcon.2024.105809
  64. Liu, H., Al-Hussein, M., & Lu, M. (2015). BIM-based integrated approach for detailed construction scheduling under resource constraints. Automation in Construction, 53, pp. 29-43. doi: 10.1016/j.autcon.2015.03.008
  65. Liu, H., Lei, Z., Li, H. X., & Al-Hussein, M. (2014a). An automatic scheduling approach: building information modeling-based onsite scheduling for panelized construction. In: Construction Research Congress 2014. Presented at the Construction Research Congress 2014, American Society of Civil Engineers, Atlanta, Georgia, pp. 1666-1675. doi: 10.1061/9780784413517.170
  66. Liu, H., Lu, M., & Al-Hussein, M. (2014b). BIM-based integrated framework for detailed cost estimation and schedule planning of construction projects. In: Presented at the 31st International Symposium on Automation and Robotics in Construction, Sydney, Australia. doi: 10.22260/ISARC2014/0038
  67. Ma, G., Hao, K., Xiao, Y., & Zhu, T. (2019). Critical chain design structure matrix method for construction project scheduling under rework scenarios. Mathematical Problems in Engineering, 2019, pp. 1-14. doi: 10.1155/2019/1595628
  68. Ma, G., Wang, A., Li, N., Gu, L., & Ai, Q. (2014). Improved critical chain project management framework for scheduling construction projects. Journal of Construction Engineering and Management, 140, p. 04014055. doi: 10.1061/(ASCE)CO.1943-7862.0000908
  69. Mahdavian, A., & Shojaei, A. (2020). Hybrid genetic algorithm and constraint-based simulation framework for building construction project planning and control. Journal of Construction Engineering and Management, 146, p. 04020140. doi: 10.1061/(ASCE)CO.1943-7862.0001939
  70. May, I., Pynn, C., & Hill, P. (2018). Arup’s digital future: The path to BIM. In: Borrmann, A., König, M., Koch, C., & Beetz, J. (eds.), Building information modeling. Springer International Publishing, Cham, pp. 509-534. doi: 10.1007/978-3-319-92862-3_31
  71. Melzner, J. (2019). BIM-based Takt-time planning and Takt control: requirements for digital construction process management. In: Presented at the 36th International Symposium on Automation and Robotics in Construction, Banff, AB, Canada. doi: 10.22260/ISARC2019/0007
  72. Mikulakova, E., König, M., Tauscher, E., & Beucke, K. (2010). Knowledge-based schedule generation and evaluation. Advanced Engineering Informatics, 24, pp. 389-403. doi: 10.1016/j.aei.2010.06.010
  73. Milat, M., Knezić, S., & Sedlar, J. (2021). Resilient scheduling as a response to uncertainty in construction projects. Applied Sciences, 11, p. 6493. doi: 10.3390/app11146493
  74. Mohamed Meabed, E. S., Mahfouz, S. Y., & Alhady, A. (2025). Modified critical chain scheduling for construction projects. HBRC Journal, 21, pp. 127-143. doi: 10.1080/16874048.2025.2459038
  75. Mohammadi, S., Tavakolan, M., & Zahraie, B. (2016). Automated planning of building construction considering the amount of available floor formwork, in: Construction Research Congress 2016. Presented at the Construction Research Congress 2016, American Society of Civil Engineers, San Juan, Puerto Rico, pp. 2197-2206. doi: 10.1061/9780784479827.219
  76. Moon, H., Kim, H., Kamat, V. R., & Kang, L. (2015). BIM-based construction scheduling method using optimization theory for reducing activity overlaps. Journal of Computing in Civil Engineering, 29, p. 04014048. doi: 10.1061/(ASCE)CP.1943-5487.0000342
  77. Niknam, M., & Karshenas, S. (2016). Integrating BIM and project schedule information using semantic web technology. In: Construction Research Congress 2016. Presented at the Construction Research Congress 2016, American Society of Civil Engineers, San Juan, Puerto Rico, pp. 689-697. doi: 10.1061/9780784479827.070
  78. Park, J., & Cai, H. (2015). Automatic construction schedule generation method through BIM model creation. In: Computing in Civil Engineering 2015. Presented at the 2015 International Workshop on Computing in Civil Engineering, American Society of Civil Engineers, Austin, Texas, pp. 620-627. doi: 10.1061/9780784479247.077
  79. Pranckutė, R. (2021). Web of science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications, 9, p. 12. doi: 10.3390/publications9010012
  80. Pregina, K., & Kannan, M. R. (2024). Fuzzy-graphical evaluation and review technique for scheduling construction projects. KSCE Journal of Civil Engineering, 28, pp. 2573-2587. doi: 10.1007/s12205-024-0904-z
  81. Purushothaman, M. B., & Kumar, S. (2022). Environment, resources, and surroundings based dynamic project schedule model for the road construction industry in New Zealand. SASBE, 11, pp. 294-312. doi: 10.1108/SASBE-08-2021-0145
  82. Salama, T., Salah, A., & Moselhi, O. (2017). Integration of offsite and onsite schedules in modular construction. In: Presented at the 34th International Symposium on Automation and Robotics in Construction, Taipei, Taiwan. doi: 10.22260/ISARC2017/0107
  83. Saldanha, A. G. (2019). Applications of building information modelling for planning and delivery of rapid transit. Proceedings of the Institution of Civil Engineers - Municipal Engineer, 172, pp. 122-132. doi: 10.1680/jmuen.16.00045
  84. Santos, F., Garcia, S. F., & Acosta, C. (2022). Comparison of the different project management software used for a commercial project in the Philippines: A case study. In: 2022 2nd International Conference in Information and Computing Research (iCORE). Presented at the 2022 2nd International Conference in Information and Computing Research (iCORE), IEEE, Cebu, Philippines, pp. 177-183. doi: 10.1109/iCORE58172.2022.00051
  85. Santos, M. C. F., Costa, D. B., & de Ferreira, E. A. M. (2021). Conceptual framework for integrating cost estimating and scheduling with BIM. In: Toledo Santos, E., & Scheer, S. (eds.), Proceedings of the 18th International Conference on Computing in Civil and Building Engineering, Lecture Notes in Civil Engineering. Springer International Publishing, Cham, pp. 613-625. doi: 10.1007/978-3-030-51295-8_43
  86. Scala, N. M., Liu, M., Alves, T., da, C. L., Schiavone, V., & Hawkins, D. (2022). The gold standard: Developing a maturity model to assess collaborative scheduling. ECAM, 30(4), pp. 1636–1656. doi: 10.1108/ECAM-07-2021-0609
  87. Senouci, A. B., & Mubarak, S. A. (2016). Multiobjective optimization model for scheduling of construction projects under extreme weather. Journal of Civil Engineering and Management, 22, pp. 373-381. doi: 10.3846/13923730.2014.897968
  88. Soman, R. K., & Molina-Solana, M. (2022). Automating look-ahead schedule generation for construction using linked-data based constraint checking and reinforcement learning. Automation in Construction, 134, p. 104069. doi: 10.1016/j.autcon.2021.104069
  89. Sonmez, R., & Gürel, M. (2016). Hybrid optimization method for large-scale multimode resource-constrained project scheduling problem. Journal of Management in Engineering, 32, 04016020. doi: 10.1061/(asce)me.1943-5479.0000468
  90. Su, X., & Cai, H. (2018). A graphical planning method for workspace-aware, four-dimensional modeling to assist effective construction planning. Journal of Information Technology in Construction, 23, pp. 340-353. doi: http://www. itcon.org/2018/17
  91. Taghaddos, H., Hermann, U., AbouRizk, S., & Mohamed, Y. (2014). Simulation-based multiagent approach for scheduling modular construction. Journal of Computing in Civil Engineering, 28, pp. 263-274. doi: 10.1061/(ASCE)CP.1943-5487.0000262
  92. Tallgren, M. V., Roupé, M., Johansson, M., & Bosch-Sijtsema, P. (2020). BIM tool development enhancing collaborative scheduling for pre-construction. ITcon, 25, pp. 374-397. doi: 10.36680/j. itcon.2020.022
  93. Tao, S., Wu, C., Hu, S., & Xu, F. (2020). Construction project scheduling under workspace interference. Computer-Aided Civil and Infrastructure Engineering, 35, pp. 923-946. doi: 10.1111/mice.12547
  94. Toan, N. Q., Anh, P. X., & Tam, N. V. (2023). Trends in BIM tools adoption in construction project implementation: A case study in Vietnam. In: Akimov, P., Vatin, N., Tusnin, A., & Doroshenko, A. (eds.), Proceedings of FORM 2022, Lecture Notes in Civil Engineering. Springer International Publishing, Cham, pp. 9-19. doi: 10.1007/978-3-031-10853-2_2
  95. Tomek, R., & Kalinichuk, S. (2015). Agile PM and BIM: A hybrid scheduling approach for a technological construction project. Procedia Engineering, 123, pp. 557-564. doi: 10.1016/j. proeng.2015.10.108
  96. Tran, D. H., & Long, L. D. (2018). Project scheduling with time, cost and risk trade-off using adaptive multiple objective differential evolution. ECAM, 25, pp. 623-638. doi: 10.1108/ECAM-05-2017-0085
  97. Tsegaye, M. (2019). Efficient procedure to scheduling construction projects at the planning phase. Baltic Journal of Real Estate Economics and Construction Management, 7, pp. 60-80. doi: 10.2478/bjreecm-2019-0004
  98. Undozerov, V. (2023). Dynamic scheduling in construction projects. E3S Web of Conferences, 457, p. 02044. doi: 10.1051/e3sconf/202345702044
  99. Vahdatikhaki, F., & Mawlana, M. (2017). A framework for augmenting 4D visualization of construction projects with scheduling uncertainties. In: Presented at the Proceedings of the 6th CSCE/CRC International Construction Specialty Conference, CSCE, Vancouver, Canada.
  100. Wang, L., Li, J., Ye, Q., Li, Y., & Feng, A. (2024). Automatic planning method of construction schedule under multi-dimensional spatial resource constraints. Buildings, 14, p. 3231. doi: 10.3390/buildings14103231
  101. Wang, Z., & Rezazadeh Azar, E. (2019). BIM-based draft schedule generation in reinforced concrete-framed buildings. Construction Innovation, 19(2), pp. 280-294. doi: https://doi. org/10.1108/CI-11-2018-0094
  102. Wefki, H., Elnahla, M., & Elbeltagi, E. (2024). BIM-based schedule generation and optimization using genetic algorithms. Automation in Construction, 164, p. 105476. doi: 10.1016/j. autcon.2024.105476
  103. Weldu, Y. W., & Knapp, G. M. (2012). Automated generation of 4D building information models through spatial reasoning. In: Construction Research Congress 2012. Presented at the Construction Research Congress 2012, American Society of Civil Engineers, West Lafayette, IN, USA, pp. 612-621. doi: 10.1061/9780784412329.062
  104. Wickramasekara, A. N., Gonzalez, V. A., O’Sullivan, M., Walker, C. G., Poshdar, M., & Ying, F. (2020). Exploring the integration of last planner® system, Bim, and construction simulation. In: Presented at the 28th Annual Conference of the International Group for Lean Construction (IGLC), Berkeley, California, USA, pp. 1057-1068. doi: 10.24928/2020/0047
  105. Wu, I.-C., Borrmann, A., Beißert, U., König, M., & Rank, E. (2010). Bridge construction schedule generation with pattern-based construction methods and constraint-based simulation. Advanced Engineering Informatics, 24, pp. 379-388. doi: 10.1016/j.aei.2010.07.002
  106. Wu, Z., & Ma, G. (2023). Automatic generation of BIM-based construction schedule: Combining an ontology constraint rule and a genetic algorithm. ECAM, 30, pp. 5253-5279. doi: 10.1108/ECAM-12-2021-1105
  107. Yang, B., Jiang, S., Dong, M., Zhu, D., & Han, Y. (2023). Graph database and matrix-based intelligent generation of the assembly sequence of prefabricated building components. Applied Sciences, 13, p. 9834. doi: 10.3390/app13179834
  108. Yuan, Z., Wang, Y., & Sun, C. (2017). Construction schedule early warning from the perspective of probability and visualization. IFS, 32, pp. 877-888. doi: 10.3233/JIFS-161084
  109. Yu, D., Lv, Q., Srivastava, G., Chen, C.-H., & Lin, J. C.-W. (2023). Multiobjective evolutionary model of the construction industry based on network planning. Transactions on Industrial Informatics, 19, pp. 2173-2182. doi: 10.1109/TII.2022.3190566
  110. Zhu, J., & Liu, W. (2020). A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics, 123, pp. 321-335. doi: 10.1007/s11192-020-03387-8
DOI: https://doi.org/10.2478/otmcj-2025-0014 | Journal eISSN: 1847-6228 | Journal ISSN: 1847-5450
Language: English
Page range: 239 - 259
Submitted on: May 15, 2025
Accepted on: Sep 9, 2025
Published on: Dec 19, 2025
Published by: University of Zagreb
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Azamat Shakharov, Thomas Beach, Yacine Rezgui, published by University of Zagreb
This work is licensed under the Creative Commons Attribution 4.0 License.