Have a personal or library account? Click to login
Economic and Environmental Effects of Innovative Potato Cultivation with the Use of Beneficial Microorganisms in Poland Cover

Economic and Environmental Effects of Innovative Potato Cultivation with the Use of Beneficial Microorganisms in Poland

Open Access
|Jun 2023

References

  1. ALENGEBAWY A., ABDELKHALEK S.T., QURESHI S.R., WANG M.Q. 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics 9, 3:42. doi: <a href="https://doi.org/10.3390/toxics9030042." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/toxics9030042.</a>
  2. ALORI E.T., BABALOLA O.O. 2018. Microbial inoculants for improving crop quality and human health in Africa. Frontiers in Microbiology, Sec. Plant Pathogen Interactions 9. doi.org/<a href="https://doi.org/10.3389/fmicb.2018.02213" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fmicb.2018.02213</a>
  3. BISHT N., CHAUHAN P.S. 2020. Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. In: Larramendy, M.L.; Soloneski, S. (eds.). Soil Contamination. doi: <a href="https://doi.org/10.5772/intechopen.94593." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5772/intechopen.94593.</a>
  4. BOGUSZ P., RUSEK P., BRODOWSKA M.S. 2021. Suspension fertilizers: How to reconcile sustainable fertilization and environmental protection. Agriculture 11, 10: 1008. <a href="https://doi.org/10.3390/agriculture11101008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/agriculture11101008</a>
  5. BUDDOLLA V. 2019. Recent Developments in applied microbiology and biochemistry. Academic Press. <a href="https://doi.org/10.1016/C2017-0-04612-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/C2017-0-04612-8</a>
  6. ÇALIŞKAN M.E., YOUSAF M.Y., YAVUZ C., M. ZIA A.B., ÇALIŞKAN S. 2023. History, production, current trends, and future prospects. Potato Production Worldwide, 1–18. doi.org/<a href="https://doi.org/10.1016/B978-0-12-822925-5.00016-5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/B978-0-12-822925-5.00016-5.</a>
  7. CHEN G., WU C., WANG F. et al. 2022. Microbial community changes in different underground compartments of potato affected yield and quality. 3 Biotech 12: 106. doi. org/<a href="https://doi.org/10.1007/s13205-022-03167-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s13205-022-03167-6</a>
  8. CONTRERAS-LIZA S., RAMÍREZ R.M., BELISARIO D.L.O. 2022. Production of potato seed tubers under the effect of Trichoderma sp. and rhizobacteria in greenhouse conditions. Revista de Ciências Agroveterinárias 21, 4. doi: <a href="https://doi.org/10.5965/223811712142022419" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5965/223811712142022419</a>
  9. DICKINSON D., BALDUCCIO L., BUYSSE J., RONSSE F., VAN HUYLENBROECK G., PRINS W. 2015. Cost-benefit analysis of using biochar to improve cereals agriculture. GCB Bioenergy 7: 850–864. <a href="https://doi.org/10.1111/gcbb.12180" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/gcbb.12180</a>
  10. DURLINGER B., TYSZLER M., SCHOLTEN J., BROEKEMA R., BLONK H. 2014. Agri-footprint: A Life Cycle Inventory database covering food and feed production and processing. Conference: 9th International Conference LCA of Food, San Francisco, USA.
  11. EKINS P., ZENGHELIS D. 2021. The costs and benefits of environmental sustainability. Sustainability Science 16: 949–965. /doi.org/<a href="https://doi.org/10.1007/s11625-021-00910-5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11625-021-00910-5.</a>
  12. ERTANI A., FRANCIOSO O., TINTI A., SCHIAVON M., PIZZEGHELLO D., NARDI S. 2018. Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. As biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Frontiers in Plant Science 9: 428. doi.org/<a href="https://doi.org/10.3389/fpls.2018.00428" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fpls.2018.00428</a>
  13. ERTANI A., PIZZEGHELLO D., FRANCIOSO O., SAMBO P., SANCHEZ-CORTES S., NARDI S. 2014. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Frontiers in Plant Science 5: 375. doi.org/<a href="https://doi.org/10.3389/fpls.2014.00375." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fpls.2014.00375.</a>
  14. FAO. 2020. Statistical databases FAOSTAT. http://faostat3.fao.org.
  15. FASUSI O.A., CRUZ C., BABALOLA O.O. 2021. Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture 11: 163. <a href="https://doi.org/10.3390/agriculture11020163" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/agriculture11020163</a>
  16. GARCIA A. 2020. The Environmental impacts of agricultural intensification technical. Standing Panel on Impact Assessment Note N. 9. https://iaes.cgiar.org
  17. GOŁĘBIEWSKA B., PAJEWSKI T. 2016. The negative effects of agricultural production and the possibility of its limitation. Annals PAAAE 18, 3: 76–81.
  18. GOPINATH K.A., VENKATESH G., MANJUNATH M., JAYALAKSHMI M., PRASAD T.V., RAJKUMAR B., VENUGOPALAN V.K., RAJU B.M.K., PRABHAKAR M., CHARY G.R., SINGH V.K. 2023. Impact of organic and integrated production systems on yield and seed quality of rainfed crops and on soil properties. Frontiers in Nutrition 10: 1127970. doi: <a href="https://doi.org/10.3389/fnut.2023.1127970" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fnut.2023.1127970</a>
  19. GRUCZEK T. 2004. Przyrodnicze i agrotechniczne aspekty uprawy ziemniaka. Zeszyty Problemowe Postępów Nauk Rolniczych 500: 11–44.
  20. HARA P. 2019. Znaczenie biostymulantów w uprawie ziemniaka (The role of bio-stimulators in popato cultivation). Ziemniak Polski2.
  21. HEDIGER W., LEHMANN B. 2007. Multifunctional agriculture and the preservation of environmental benefits. Swiss Journal of Economics and Statistics 143, 4: 449–470. doi: <a href="https://doi.org/10.1007/bf03399246" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/bf03399246</a>
  22. HIJRI M. 2016. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26: 209–214. doi.org/<a href="https://doi.org/10.1007/s00572-015-0661-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00572-015-0661-4</a>
  23. HUSSAIN T. 2016. Potatoes: Ensuring food for the future. Advances in Plants and Agriculture Research 3, 6:178–182. doi: <a href="https://doi.org/10.15406/apar.2016.03.00117" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15406/apar.2016.03.00117</a>
  24. ISLAM S. 2018. Microorganisms in the rhizosphere and their utilization in agriculture: A mini review. PSM Microbiology 3, 3: 105–110.
  25. KALOGIANNIDIS S., KALFAS D., CHATZITHEODORIDIS F., PAPAEVANGELOU O. 2022. Role of crop protection technologies in sustainable agricultural productivity and management. Land 11: 1680. <a href="https://doi.org/10.3390/land11101680" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/land11101680</a>
  26. KIRCHMANN H. 2019. Why organic farming is not the way forward. Outlook on Agriculture 48, 1: 22–27. <a href="https://doi.org/10.1177/0030727019831702" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/0030727019831702</a>
  27. LANKOSKI J., OLLIKAINEN M. 2003. Agri-environmental externalities: A framework for designing targeted policies. European Review of Agricultural Economics 30: 51–75. doi.org/<a href="https://doi.org/10.1093/erae/30.1.51" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/erae/30.1.51</a>
  28. LI J., WANG J., LIU H., MACDONALD C.A., SINGH B.K. 2022. Application of microbial inoculants significantly enhances crop productivity: A meta-analysis of studies from 2010 to 2020. Journal of Sustainable Agriculture and Environment 1: 216–225. doi.org/<a href="https://doi.org/10.1002/sae2.12028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/sae2.12028</a>
  29. ŁUCZKA W. 2020. Procesy rozwojowe rolnictwa ekologicznego i ich ekonomiczno-społeczne uwarunkowania. Wydawnictwo Naukowe Scholar.
  30. MACIEJCZAK M., FILIPIAK T. 2020. Economic, social and environmental impacts of the potato and its beneficial microorganism interactions. Annals PAAAE XXII, 4: 140–150. doi: <a href="https://doi.org/10.5604/01.3001.0014.6032." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5604/01.3001.0014.6032.</a>
  31. Manual for Designers. Eco-indicator 99. 2020. A damage oriented method for Life Cycle Impact Assessment. Ministry of Housing, Spatial Planning and the Environment Communications Directorate.
  32. OTERO I., FARRELL K.N., PUEYO S., KALLIS G., KEHOE L., HABERL H., PLUTZAR CH., HOBSON P., GARCÍA-MÁRQUEZ J., RODRÍGUEZ-LABAJOS B., MARTIN J-L., ERB K-H., SCHINDLER S., NIELSEN J., SKORIN T., SETTELE J., ESSL F., GÓMEZ-BAGGETHUN E., BROTONS L., RABITSCH W., SCHNEIDER F., PE`ER G. 2020. Biodiversity policy beyond economic growth. Conservation Letters 13, 4:e12713: 1–18. <a href="https://doi.org/10.1111/conl.12713." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/conl.12713.</a>
  33. PAWLAK J. 2015. Rolnictwo a środowisko naturalne (Agriculture and Environment). Problemy Inżynierii Rolniczej (Problems of Agricultural Engineering) 1, 87: 17–28.
  34. PIOTROWSKA K., KRUSZELNICKA W., BAŁDOWSKA-WITOS P., KASNER R., RUDNICKI J., TOMPOROWSKI A., FLIZIKOWSKI J., OPIELAK M. 2019. Assessment of the environmental impact of a car tire throughout its lifecycle using the LCA method. Materials 12, 24: 4177. <a href="https://doi.org/10.3390/ma12244177." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ma12244177.</a>
  35. POPP J., PETŐ K., NAGY J. 2013. Pesticide productivity and food security. A review. Agronomy for Sustainable Development 33: 243–255. <a href="https://doi.org/10.1007/s13593-012-0105-x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13593-012-0105-x.</a>
  36. RITCHIE H., ROSADO P., ROSER M. 2022. Environmental impacts of food production. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/environmental-impacts-of-food.
  37. SOLANKI M.K., SOLANKI A.CH., SINGH A., BRIJENDRA KASHYAP B., RAI S., MALVIYA M.K. 2023. Microbial endophytes’ association and application in plant health: an overview—Chapter 1. In: Solanki et al. (eds). Microbial Endophytes and Plant Growth, Beneficial Interactions and Applications, 1–18. doi: <a href="https://doi.org/10.1016/B978-0-323-90620-3.00014-3." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/B978-0-323-90620-3.00014-3.</a>
  38. SONG J., KONG Z.Q., ZHANG D.D., CHEN J.Y., DAI X.F., LI R. 2021. Rhizosphere microbiomes of potato cultivated under bacillus subtilis treatment influence the quality of potato tubers. International Journal of Molecular Sciences 22, 21:12065. doi: <a href="https://doi.org/10.3390/ijms222112065." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/ijms222112065.</a>
  39. STRUIK P.C., KUYPER T.W. 2017. Sustainable intensification in agriculture: the richer shade of green. A review. Agronomy for Sustainable Development 37: 39. <a href="https://doi.org/10.1007/s13593-017-0445-7." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13593-017-0445-7.</a>
  40. SUNDSTRÖM J.F., ALBIHN A., BOQVIST S. et al. 2014. Future threats to agricultural food production posed by environmental degradation, climate change, and animal and plant diseases—A risk analysis in three economic and climate settings. Food Security 6: 201–215. <a href="https://doi.org/10.1007/s12571-014-0331-y." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12571-014-0331-y.</a>
  41. The Ecoinvent Database. A Life Cycle Inventory for transparency in environmental assessments. https://ecoinvent.org/wp-content/uploads/2022/10/ecoinvent-sectorial-Brochure-2022.
  42. TORRES-VITE H., CONTRERAS-LIZA S.E. 2019. Use of microbial inoculants for production of potato tuber seed in greenhouse conditions. Peruvian Agricultural Research 1, 2: 40–47. doi: <a href="https://doi.org/10.51431/par.v1i2.581." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.51431/par.v1i2.581.</a>
  43. TRAWCZYŃSKI C. 2020. The effect of biostimulators on the yield and quality of potato tubers grown in drought and high temperature conditions. Biuletyn Instytutu Hodowli Aklimatyzacji Roślin 289: 11–19.
  44. TREDER K., MICHAŁOWSKA D., PAWŁOWSKA A., URBANOWICZ J., PANEK J., FRĄC M., FALCAO-SALLES J. 2021. International project potatoMETAbiome—Description of the work performer. Ziemniak Polski 2: 3–9.
  45. VAN DIJK M., MORLEY T., RAU M.L. et al. 2021. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food 2: 494–501. <a href="https://doi.org/10.1038/s43016-021-00322-9." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s43016-021-00322-9.</a>
  46. VIANA C.M., FREIRE D., ABRANTES P., ROCHA J., PEREIRA P. 2022. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Science of The Total Environment 806, 3: 150718. <a href="https://doi.org/10.1016/j.scitotenv.2021.150718." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.scitotenv.2021.150718.</a>
  47. VISHNU J.K. 2022. Chapter 8—Bacterial inoculants for rhizosphere engineering: Applications, current aspects, and challenges. Rhizosphere Engineering, 129–150. doi: <a href="https://doi.org/10.1016/B978-0-323-89973-4.00004-1." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/B978-0-323-89973-4.00004-1.</a>
  48. WANG Z., LI Y., ZHUANG L., YU Y., LIU J., ZHANG L., … WANG, Q.A. 2019. Rhizosphere-derived consortium of bacillus subtilis and trichoderma harzianum suppresses common scab of potato and increases yield. Computational and Structural Biotechnology Journal 17: 645–653. doi:<a href="https://doi.org/10.1016/j.csbj.2019.05.003." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.csbj.2019.05.003.</a>
  49. WANG Z., LI Y., ZHAO Y., ZHUANG L., YU Y., WANG M., LIU J., WANG Q. 2021. A microbial consortium-based product promotes potato yield by recruiting rhizosphere bacteria involved in nitrogen and carbon metabolisms. Microbial Biotechnology 14, 5: 1961–1975. doi. org/<a href="https://doi.org/10.1111/1751-7915.13876." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/1751-7915.13876.</a>
  50. YU J., WU J. 2018. The sustainability of agricultural development in China: The agriculture–environment nexus. Sustainability 10: 1776. doi.org/<a href="https://doi.org/10.3390/su10061776." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/su10061776.</a>
  51. ZHANG H., XU F., WU Y., HU H., DAI X. 2017. Progress of potato staple food research and industry development in China. Journal of Integrative Agriculture 16, 12: 2924–2932. doi:<a href="https://doi.org/10.1016/s2095-3119(17)61736-2." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/s2095-3119(17)61736-2.</a>
  52. ZHICHKIN K., NOSOV V., ZHICHKINA L., DIBROVA ZH., CHEREPOVA Y. 2019. Development of evaluation model effectiveness of modern technologies in crop production. IOP Conference Series: Earth and Environmental Science 315: 022023. doi:<a href="https://doi.org/10.1088/1755-1315/315/2/022023." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/1755-1315/315/2/022023.</a>
  53. ZIĘTARA W., OLKO-BAGIEŃSKA T. 1986. Zadania z analizy działalności gospodarczej i planowania w gospodarstwie rolnym. PWRiL, Warszawa.
DOI: https://doi.org/10.2478/oszn-2023-0006 | Journal eISSN: 2353-8589 | Journal ISSN: 1230-7831
Language: English
Page range: 11 - 18
Published on: Jun 30, 2023
Published by: National Research Institute, Institute of Environmental Protection
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2023 Barbara Gołębiewska, Mariusz Maciejczak, Tadeusz Filipiak, Agnieszka Sobolewska, Janusz Urbanowicz, Jerzy Osowski, Krzysztof Treder, published by National Research Institute, Institute of Environmental Protection
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.