Have a personal or library account? Click to login
Predicting HR Professionals’ Adoption of HR Analytics: An Extension of UTAUT Model Cover

Predicting HR Professionals’ Adoption of HR Analytics: An Extension of UTAUT Model

By: Susmita Ekka and  Punam Singh  
Open Access
|Mar 2022

References

  1. Ahmad, A. B., Butt, A. S., Chen, D., & Liu, B (2020). A mediated model of the effect of organizational culture on the intentions to engage in change-supportive behaviours: insights from the theory of planned behaviour. Journal of Management & Organization, 1-21. https://doi.org/10.1017/jmo.2020.4110.1017/jmo.2020.41
  2. Ajzen, I. (1985). From intentions to actions: A theory of planned behaviour. In Action control (pp. 11-39). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69746-3_210.1007/978-3-642-69746-3_2
  3. Altalhi, M. (2021). Toward a model for acceptance of MOOCs in higher education: the modified UTAUT model for Saudi Arabia. Education and Information Technologies, 26(2), 1589-1605. https://doi.org/10.1007/s10639-020-10317-x10.1007/s10639-020-10317-x
  4. Ammenwerth, E. (2019). Technology acceptance models in health informatics: TAM and UTAUT. Stud Health Technol Inform, 263, 64-71. https://doi.org/10.3233/SHTI190111
  5. Angrave, D., Charlwood, A., Kirkpatrick, I., Lawrence, M., & Stuart, M. (2016). HR and analytics: why HR is set to fail the big data challenge. Human Resource Management Journal, 26(1), 1-11. https://doi.org/10.1111/1748-8583.1209010.1111/1748-8583.12090
  6. Attuquayefio, S., & Addo, H. (2014). Using the UTAUT model to analyze students’ ICT adoption. International Journal of Education and Development Using ICT, 10(3). https://www.learntechlib.org/p/148478/
  7. Bankole, F. O., & Bankole, O. O. (2017). The effects of cultural dimension on ICT innovation: Empirical analysis of mobile phone services. Telematics and Informatics, 34(2), 490-505. https://doi.org/10.1016/j.tele.2016.08.00410.1016/j.tele.2016.08.004
  8. Ben-Gal, H. C. (2019). An ROI-based review of HR analytics: practical implementation tools. Personnel Review 48(6),1429-1448. https://doi.org/10.1108/PR-11-2017-036210.1108/PR-11-2017-0362
  9. Bindu, K. (2016). A Review of Poor HR Analytical Skills. International Journal of Innovative Research in Technology (IJIRT), 3 (1), 397-402.
  10. Borkovich, D. J., Skovira, R. J., & Breese-Vitelli, J. (2015). New technology adoption: embracing cultural influences. Issues in Information Systems, 16(3). https://doi.org/10.48009/3_iis_2015_138-14710.48009/3_iis_2015_138-147
  11. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295-336.
  12. Chin, W.W. (2010). How to write up and report PLS analyses. In: Handbook of Partial Least Squares, pp.655–690, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32827-8_2910.1007/978-3-540-32827-8_29
  13. Dwivedi, Y. K., Shareef, M. A., Simintiras, A. C., Lal, B., & Weerakkody, V. (2016). A generalised adoption model for services: A cross-country comparison of mobile health (m-health). Government Information Quarterly, 33(1), 174-187. https://doi.org/10.1016/j.giq.2015.06.00310.1016/j.giq.2015.06.003
  14. Eskiler, E., Ekici, S., Soyer, F., & Sari, I. (2016). The relationship between organizational culture and innovative work behaviour for sports services in tourism enterprises. Physical Culture and Sport. Studies and Research, 69(1), 53-64. http://doi.org/10.1515/pcssr-2016-000710.1515/pcssr-2016-0007
  15. Falk, R.F. and Miller, N.B. (1992). A Primer for Soft Modeling, University of Akron Press, Ohio, USA.
  16. Fernandez, V., & Gallardo-Gallardo, E. (2021). Tackling the HR digitalization challenge: key factors and barriers to HR analytics adoption. Competitiveness Review: An International Business Journal, 31(1) 162-187. https://doi.org/10.1108/CR-12-2019-016310.1108/CR-12-2019-0163
  17. Fisk, R. P., Patricio, L., Lin, J. S. C., & Chang, H. C. (2011). The role of technology readiness in self-service technology acceptance. Managing Service Quality: An International Journal, 21(4), 424-444. https://doi.org/10.1108/0960452111114628910.1108/09604521111146289
  18. Fitz-Enz, J. (2010). The new HR analytics: predicting the economicvalue of your company’s human capital investments. Amacom.
  19. Frambach, R.T. and Schillewaert, N. (2002). Organizational Innovation Adoption: A Multi-Level Framework of Determinants and Opportunities for Future Research. Journal of Business Research, 55, 163-176. https://doi.org/10.1016/S0148-2963(00)00152-110.1016/S0148-2963(00)00152-1
  20. Gordon, G. G., & DiTomaso, N. (1992). Predicting corporate performance from organizational culture. Journal of Management Studies, 29(6), 783-798. https://doi.org/10.1111/j.1467-6486.1992.tb00689.x10.1111/j.1467-6486.1992.tb00689.x
  21. Hair Jr., J.F., Sarstedt, M., Ringle, C.M. and Gudergan, S.P. (2017). Advanced Issues in Partial Least Squares Structural Equation Modeling, Sage Publications, USA.10.1007/978-3-319-05542-8_15-1
  22. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning, 46(1-2), 1-12. Https://doi.org/10.1016/j.lrp.2013.01.00110.1016/j.lrp.2013.01.001
  23. Hair, J.F., Anderson, R.E., Tatham, R.L. and Black, W.C. (1998). Factorial Analysis. Multivariate Data Analysis, 5th ed., Prentice Hall, New Jersey.
  24. Hair, J. F., Hult, G. T. M., Ringle, C. M., and Sarstedt, M. (2022). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 3rd Ed., Sage: Thousand Oaks.10.1007/978-3-030-80519-7
  25. Halper, F. (2014). Predictive analytics for business advantage. TDWI Research, 1-32. Available from https://vods.dm.ux.sap.com/previewhub/ITAnalyticsContentHubANZ/downloadasset.2014-03-mar-17-21.predictive-analytics-for-business-advantage-pdf.pdf
  26. Hofstede, G. (2001). Culture’s recent consequences: Using dimension scores in theory and research. International Journal of Cross Cultural Management, 1(1), 11-17. https://doi.org/10.1177%2F14705958011100210.1177/147059580111002
  27. Kabra, G., Ramesh, A., Akhtar, P., & Dash, M. K. (2017). Understanding behavioural Intention to use information technology: Insights from humanitarian practitioners. Telematics and Informatics, 34(7), 1250-1261. https://doi.org/10.1016/j.tele.2017.05.01010.1016/j.tele.2017.05.010
  28. Kariyapperuma, K. A. S. K. (2016). Role of organisational culture in open innovation: an empirical study of service sector organisations in Sri Lanka. Vidyodaya Journal of Management, 2(2), 55-76.10.31357/vjm.v2i2.3643
  29. Khazanchi, S., Lewis, M. W., & Boyer, K. K. (2007). Innovation-supportive culture: The impact of organizational values on process innovation. Journal of Operations Management, 25(4), 871-884. https://doi.org/10.1016/j.jom.2006.08.00310.1016/j.jom.2006.08.003
  30. Kline, R.B. (2011). Principles and Practice of Structural Equation Modelling, 3rd. ed., The Guilford Press. New York.
  31. Kock, N. (2015). Common method bias in PLS-SEM: a full collinearity assessment approach, International Journal of e-Collaboration (IJEC), 11(4),.1–10. http://doi.org/10.4018/ijec.201510010110.4018/ijec.2015100101
  32. Liu, H., Ke, W., Wei, K. K., Gu, J., & Chen, H. (2010). The role of institutional pressures and organizational culture in the firm’s Intention to adopt internet-enabled supply chain management systems. Journal of Operations Management, 28(5), 372-384. https://doi.org/10.1016/j.jom.2009.11.01010.1016/j.jom.2009.11.010
  33. Marler, J. H., & Boudreau, J. W. (2017). An evidence-based review of HR Analytics. The International Journal of Human Resource Management, 28(1), 3-26. https://doi.org/10.1080/09585192.2016.124469910.1080/09585192.2016.1244699
  34. McAfee, A. (2002). The impact of enterprise information technology adoption on operational performance: An empirical investigation. Production and Operations Management, 11(1), 33-53. https://doi.org/10.1111/j.1937-5956.2002.tb00183.x10.1111/j.1937-5956.2002.tb00183.x
  35. Mohammed, D., & Quddus, A. (2019). HR Analytics: A modern tool in hr for predictive decision making. Journal of Management, 6(3). https://doi.org/10.34218/JOM.6.3.2019.00710.34218/JOM.6.3.2019.007
  36. Mohtaramzadeh, M., Ramayah, T., & Jun-Hwa, C. (2018). B2B e-commerce adoption in Iranian manufacturing companies: Analyzing the moderating role of organizational culture. International Journal of Human–Computer Interaction, 34(7), 621-639. https://doi.org/10.1080/10447318.2017.138521210.1080/10447318.2017.1385212
  37. O’Reilly III, C. A., Chatman, J., & Caldwell, D. F. (1991). People and organizational culture: A profile comparison approach to assessing person-organization fit. Academy of Management Journal, 34(3), 487-516. https://doi.org/10.5465/25640410.5465/256404
  38. Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioural research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879. https://doi.org/10.1037/0021-9010.88.5.87910.1037/0021-9010.88.5.879
  39. Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). Editor’s comments: a critical look at the use of PLS-SEM in” MIS Quarterly”. MIS Quarterly, 36(1), iii-xiv. https://doi.org/10.2307/4141040210.2307/41410402
  40. Sarstedt, M., Hair Jr., J.F., Cheah, J.H., Becker, J.M. and Ringle, C.M. (2019). How to specify, estimate, and validate higher-order constructs in PLS-SEM, Australasian Marketing Journal (AMJ), 27(3), 197–211. https://doi.org/10.1016/j.ausmj.2019.05.00310.1016/j.ausmj.2019.05.003
  41. Srite, M. (2006). Culture as an explanation of technology acceptance differences: An empirical investigation of Chinese and US users. Australasian Journal of Information Systems, 14(1). https://doi.org/10.3127/ajis.v14i1.410.3127/ajis.v14i1.4
  42. Sunny, S., Patrick, L., & Rob, L. (2019). Impact of cultural values on technology acceptance and technology readiness. International Journal of Hospitality Management, 77, 89-96. https://doi.org/10.1016/j.ijhm.2018.06.01710.1016/j.ijhm.2018.06.017
  43. Talukder, M. (2012). Factors affecting the adoption of technological innovation by individual employees: An Australian Study. Procedia-Social and Behavioural Sciences, 40, 52-57. https://doi.org/10.1016/j.sbspro.2012.03.16010.1016/j.sbspro.2012.03.160
  44. Tseng, S. M. (2017). Investigating the moderating effects of organizational culture and leadership style on IT-adoption and knowledge-sharing Intention. Journal of Enterprise Information Management. https://doi.org/10.1108/JEIM-04-2016-008110.1108/JEIM-04-2016-0081
  45. Tsui, A. S., Wang, H., & Xin, K. R. (2006). Organizational culture in China: An analysis of culture dimensions and culture types. Management and Organization Review, 2(3), 345-376. https://doi.org/10.1111/j.1740-8784.2006.00050.x10.1111/j.1740-8784.2006.00050.x
  46. Van der Togt, J., & Rasmussen, T. H. (2017). Toward evidence-based HR. Journal of Organizational Effectiveness: People and Performance. https://doi.org/10.1108/JOEPP-02-2017-001310.1108/JOEPP-02-2017-0013
  47. Vargas, R., Yurova, Y. V., Ruppel, C. P., Tworoger, L. C., & Greenwood, R. (2018). Individual adoption of HR analytics: a fine grained view of the early stages leading to adoption. The International Journal of Human Resource Management, 29(22), 3046-3067. https://doi.org/10.1080/09585192.2018.144618110.1080/09585192.2018.1446181
  48. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.1192610.1287/mnsc.46.2.186.11926
  49. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478. https://doi.org/10.2307/3003654010.2307/30036540
  50. Wandhe, P. (2020). HR Analytics: A Tool for Strategic Approach to HR Productivity. Available at SSRN 3700502. https://dx.doi.org/10.2139/ssrn.370050210.2139/ssrn.3700502
  51. Wang, G., Lu, H., Hu, W., Gao, X., & Pishdad-Bozorgi, P. (2020). Understanding Behavioural Logic of Information and Communication Technology Adoption in Small-and Medium-Sized Construction Enterprises: Empirical Study from China. Journal of Management in Engineering, 36(6), 05020013. http://doi.org/10.1061/(asce)me.1943-5479.000084310.1061/(ASCE)ME.1943-5479.0000843
  52. Weerakkody, V., Kapoor, K., Balta, M. E., Irani, Z., & Dwivedi, Y. K. (2017). Factors influencing user acceptance of public sector big open data. Production Planning & Control, 28(11-12), 891-905. https://doi.org/10.1080/09537287.2017.133680210.1080/09537287.2017.1336802
DOI: https://doi.org/10.2478/orga-2022-0006 | Journal eISSN: 1581-1832 | Journal ISSN: 1318-5454
Language: English
Page range: 77 - 93
Submitted on: Oct 20, 2021
|
Accepted on: Feb 7, 2022
|
Published on: Mar 8, 2022
Published by: University of Maribor
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Susmita Ekka, Punam Singh, published by University of Maribor
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.