Have a personal or library account? Click to login
Observation of 99Mo radioactivity produced in natural molybdenum irradiated with an electron beam from a linear industrial accelerator Cover

Observation of 99Mo radioactivity produced in natural molybdenum irradiated with an electron beam from a linear industrial accelerator

Open Access
|Oct 2025

References

  1. Herbert, R., Kulke, W., & Shepherd, R. T. (1965). The use of technetium 99m as a clinical tracer element. Postgrad. Med. J., 41(481), 656–662. DOI: 10.1136/pgmj.41.481.656.
  2. Sukhoruchkin, S. I., & Soroko, Z. N. (2012). Excited nuclear states for Tc-99 (Technetium). Landolt–Börnstein – Group I Elementary Particles, Nuclei and Atoms, 25B. DOI: 10.1007/978–3–642–22930–5_411.
  3. Spreckelmeyer, S., Ramogida, C. F., Rousseau, J., Arane, K., Bratanovic, I., Colpo, N., Jermilova, U., Dias, G., Dude, I., Jaraquemada-Peláez, M. G., Benard, F., Schaffer, P., & Orvig, C. (2017). p-no2–bn–h4neunpa and H4neunpa–trastuzumab: Bifunctional chelator for radiometalpharmaceuticals and 111 in immuno-single photon emission computed tomography imaging. Bioconjug. Chem., 28, 2145–2159. DOI: 10.1021/acs.bioconjchem.7b00311.
  4. Rigby, A., Blower, J. E., Blower, P. J., Terry, S. Y. A., & Abbate, V. (2021). Targeted Auger electron-emitter therapy: Radiochemical approaches for Tl-201 radiopharmaceuticals. Nucl. Med. Biol., 98/99, 1–7. DOI: 10.1016/j.nucmedbio.2021.03.012.
  5. Maroor, R. A. P., Ashutosh, D., & Russ, K. F. (2013). Sustained availability of 99mTc: Possible paths forward. J. Nucl. Med., 54(2), 313–323. DOI: 10.2967/jnumed.112.110338.
  6. National Research Council. (2009). Medical isotope production without highly enriched uranium. Washington (DC): National Academies Press (US). DOI: 10.17226/12569.
  7. Filzen, L. M., Ellingson, L. R., Paulsen, A. M., & Hung, J. C. (2017). Potential ways to address short-age situations of 99Mo/99mTc. J. Nucl. Med. Technol., 45(1), 1–5. DOI: 10.2967/jnmt.116.185454.
  8. Ruth, T. J. (2014). The medical isotope crisis: How we got here and where we are going. J. Nucl. Med. Technol., 42(4), 245–248. DOI: 10.2967/jnmt.114.144642.
  9. Jaroszewicz, J., Marcinkowska, Z., & Pytel, K. (2014). Production of fission product 99Mo using high-enriched uranium plates in Polish nuclear research reactor MARIA: Technology and neutronic analysis. Nukleonika, 59(2), 43–52. DOI: 10.2478/nuka-2014-0009.
  10. Jang, J., Kikunaga, H., Sekimoto, S., Inagaki, M., Kawakami, T., Ohtsuki, T., Kashiwagi, S., Takahashi, K., Tsukada, K., Tatenuma, K., & Uesaka, M. (2021). Design and testing of a W-MoO3 target system for electron linac production of 99Mo/99mTc. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 987, 164815. DOI: 10.1016/j.nima.2020.164815.
  11. Shameem, H., & Prelas, M. A. (2020). Molybdenum-99 production pathways and the sorbents for 99Mo/99mTc generator systems using (n, γ) 99Mo: a review. SN Appl. Sci., 2, 1782. DOI: 10.1007/s42452-020-03524-1.
  12. Bzymek, E., Konefał, A., Orlef, A., Maniakowski, Z., Szewczuk, M., Sokół, M., & Zipper, W. (2016). Test of production of 99Mo/99mTc by means of typical medical linear accelerators used in teleradiotherapy. Acta Phys. Pol. B, 47(3), 777–781. DOI: 10.5506/APhysPolB.47.777.
  13. Pare, P., Sello, T., Zawistowski, T., de Jong, M., Zeevaart, J. R., & Wagener, C. (2020). South African production of high specific activity Mo-99 (precursor for Tc-99m) via the (γ,n) reaction making use of the Szilard–Chalmers effect for CRPF22068. NecsaSouth Africa, University of Saskatchewan, Saskatoon, Canada. (RL-NTPMO99-REP-20002).
  14. Mang'era, K., Ogbomo, K., Zriba, R., Fitzpatrick, J., Brown, J., Pellerin, E., Barnard, J., Saunders, C., & de Jong, M. (2015). Processing and evaluation of linear accelerator-produced 99Mo/99mTc in Canada. J. Radioanal. Nucl. Chem., 305, 79–85. DOI: 10.1007/s10967-015-3997-5.
  15. Cieszykowska, I., Janiak, T., Barcikowski, T., Mielcarski, M., Mikołajczak, R., Choiński, J., Barlak, M., & Kurpaska, Ł. (2017). Manufacturing and characterization of molybdenum pellets used as targets for 99mTc production in cyclotron. Appl. Radiat. Isot., 124, 124–131. DOI: 10.1016/j.apradiso.2017.03.006.
  16. Skliarova, H., Cisternino, S., Cicoria, G., Marengo, M., & Palmieri, V. (2019). Innovative target for production of technetium-99m by biomedical cyclotron. Molecules, 24(1), 25. DOI: 10.3390/molecules24010025.
  17. Gumiela, M. (2018). Cyclotron production of 99mTc: Comparison of known separation technologies for isolation of 99mTc from molybdenum targets. Nucl. Med. Biol., 58, 33–41. DOI: 10.1016/j.nucmedbio.2017.11.001.
  18. Gagnon, K., Wilson, J. S., Holt, C. M. B., Abrams, D. N., McEwan, A. J. B., Mitlin, D., & McQuarrie, S. A. (2012). Cyclotron production of 99mTc: Recycling of enriched 100Mo metal targets. Appl. Radiat. Isot., 70(8), 1685–1690. DOI: 10.1016/j.apradiso.2012.04.016.
  19. Zawistowski, T., & Wronka, S. (2021). Simulation of 99Mo production from 30 MeV electron linear accelerator. Acta Phys. Pol. A, 139(4), 451–453. DOI: 10.12693/APhysPolA.139.451.
  20. Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., Bagli, E., Bagulya, A., Banerjee, S., Barrand, G., Beck, B. R., Bogdanov, A. G., Brandt, D., Brown, J. M. C., Burkhardt, H., Canal, Ph., Cano-Ott, D., Chauvie, S., Cho, K., Cirrone, G. A. P., Cooperman, G., Cortes-Giraldo, M. A., Cosmo, G., Cuttone, G., Depaola, G., Desorgher, L., Dong, X., Dotti, A., Elvira, V. D., Folger, G., Francis, Z., Galoyan, A., Garnier, L., Gayer, M., Genser, K. L., Grichine, V. M., Guatelli, S., Gueye, P., Gumplinger, P., Howard, A. S., Hrivnacova, I., Hwang, S., Incerti, S., Ivanchenko, A., Ivanchenko, V. N., Jonaes, F. W., Jun, S. Y., Kaitaniemi, P., Karakatsanis, N., Karamitros, M., Kelsey, M., Kimura, A., Koi, T., Kurashige, H., Lechner, A., Lee, S. B., Longo, F., Maire, M., Mancusi, D., Mantero, A., Mendoza, E., Morgan, B., Murakami, K., Nikitina, T., Pandola, L., Paprocki, P., Perl, J., Petrović, I., Pia, M. G., Pokorski, W., Quesada, J. M., Raine, M., Reis, M. A., Ribon, A., Ristić Fira, A., Romano, F., Russo, G., Santin, G., Sasaki, T., Sawkey, D., Shin, J. I., Strakovsky, I. I., Taborda, A., Tanaka, S., Tome, B., Toshito, T., Tran, H. N., Truscott, P. R., Urban, L., Uzhinsky, V., Verbeke, J. M., Verderi, M., Wendt, B. L., Wenzel, H., Wright, D. H., Wright, D. M., Yamasdhita, T., Yarba, J., & Yoshida, H. (2016). Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 835(1), 186–225. DOI: 10.1016/j.nima.2016.06.125.
  21. Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce Dubois, P., Asai, M., & Heikkinen, A. (2006). Geant4 developments and applications. IEEE Trans. Nucl. Sci., 53(1), 270–278. DOI: 10.1109/TNS.2006.869826.
  22. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell'Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gómez Cadenas, J. J., Gonzalez, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F. W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampen, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, K., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O'Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M. G., Ranjard, F., Rybin, A., Sadilov, S., Di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J. P., Wenaus, T., Williams, D. C., Wright, D., Yamada, T., Yoshida, H., & Zschiesche, D. (2003). Geant4–a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 506(3), 250–303. DOI: 10.1016/S0168–9002(03)01368–8.
  23. Berger, M. J., Coursey, J. S., Zucker, M. A., & Chang, J. (2017). Stopping-power G range tables for electrons, protons, and helium ions. NIST Standard Reference Database 124. DOI: 10.18434/T4NC7P.
  24. National Centre for Nuclear Research. (2023). Tukan8k. [Online]. Retrieved June 26, 2023, from https://tukan.ncbj.gov.pl/?tukan8k,1.
  25. National Nuclear Data Center. (2024). NuDat 3. Brookhaven National Laboratory. Retrieved February 29, 2024, from https://www.nndc.bnl.gov/nudat3/.
  26. Laboratoire National Henri Becquerel. (2023). Library for gamma and alpha emissions. Retrieved September 12, 2023, from http://www.lnhb.fr/Laraweb/index.php.
  27. Kawano, T., Cho, Y. S., Dimitriou, P., Filipescu, D., Iwamoto, N., Plujko, V., Tao, X., Utsunomiya, H., Varlamov, V., Xu, R., Capote, R., Gheorghe, I., Gorbachenko, O., Jin, Y. L., Renstrøm, T., Sin, M., Stopani, K., Tian, Y., Tveten, G. M., Wang, J. M., Belgya, T., Firestone, R., Goriely, S., Kopecky, J., Krtička, M., Schwengner, R., Siem, S., & Wiedeking, M. (2020). IAEA Photonuclear Data Library 2019. Nucl. Data Sheets, 163, 109–162. DOI: 10.1016/j.nds.2019.12.002.
  28. International Atomic Energy Agency. (2024). IAEA Photonuclear Data Library. Retrieved January 31, 2024, from https://www-nds.iaea.org/photonuclear.
  29. Martins, M. N., Hayward, E., Lamaze, G., Maruyama, X. K., Schima, F. J., & Wolynec, E. (1984). Experimental test of the bremsstrahlung cross section. Phys. Rev. C, 30, 1855. DOI: 10.1103/PhysRevC.30.1855.
  30. Geant4 Collaboration. (n.d.). Physics Reference Manual. https://geant4.web.cern.ch/docs/#physics-reference-manual.
  31. Tsechanski, A., Fedorchenko, D., & Starovoitova, V. (2020). On the contribution of the electronuclear reaction to the photonuclear production of Mo-99 and other radioisotopes. Radiat. Phys. Chem., 177, 109108. DOI: 10.1016/j.radphyschem.2020.109108.
  32. Cataldi, M. I. C., Wolynec, E., Martins, M. N., Gouffon, P., & Miyao, Y. (1998). Electrodisintegration of 208Pb, 209Bi and 181Ta. J. Phys. G-Nucl. Phys., 14, 779–786. DOI: 10.1088/0305–4616/14/6/018.
  33. Anthony, I., McGeorge, J. C., & Branford, D. (1987). Virtual photon analysis of the reaction 181Ta(e,e'π+)181Hf. J. Phys. G-Nucl. Phys., 13(12), 1517–1521. DOI: 10/ISSN 0305-4616.
  34. Yu, Y., Weng, X., Yang, Y., Cui, T., Zhang, Z., Lin, S., Zhang, Z., & Yang, Y. (2020). The study of fast neutrons production via the electrodisintegration reactions of high energy electrons. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 954, 161747. DOI: 10.1016/j.nima.2018.12.062.
  35. Blokhin, A., Chadwick, M., Fukahori, T., Han, Y., Lee, Y.-O., Martins, M., Mughabhab, S. F., Oblosinsky, P., Varlamov, V., Yu, B., & Zhang, J. (2000). Handbook on photonuclear data for applications: Cross section and spectra. Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1178).
  36. Ross, C. K., & Diamond, W. T. (2015). Predictions regarding the supply of 99Mo and 99mTc when NRU ceases production in 2018. Med. Phys. DOI: 10.48550/arXiv.1506.08065.
  37. Batii, V. G., Vladimirov, Y. V., Rakivnenko, Y. N., Ranyuk, Yu. N., Rastrepin, O. A., & Skakun, E. A. (1987). Radionuclide accumulation for photo- and electron disintegration of nuclei in the A ∼ 90 region. At. Energy, 63, 899–903. DOI: 10.1007/BF01126101.
DOI: https://doi.org/10.2478/nuka-2025-0013 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 125 - 132
Submitted on: Feb 28, 2024
Accepted on: Jun 6, 2025
Published on: Oct 21, 2025
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Tobiasz Zawistowski, Sławomir Wronka, Przemysław Adrich, Mariusz Chabera, Izabela Cieszykowska, Tomasz Janiak, Tymoteusz Kosiński, Michał Matusiak, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.