References
- Tian, J., Fan, Y., Pan, T., Zhang, X., Yin, J., & Zhang, Q. (2024). A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems. Renew. Sustain. Energy Rev., 189, 113978. DOI: 10.1016/j.rser.2023.113978.
- Wang, J., Ma, J., Zhuang, Z., Liang, Z., Jia, K., Ji, G., Zhou, G., & Cheng, H. (2024). Toward direct regeneration of spent lithium-ion batteries: A nextgeneration recycling method. Chem. Rev., 124(5), 2839–2887. DOI: 10.1021/acs.chemrev.3c00884.
- Duan, Y., Chen, S., Zhang, L., Guo, L., & Shi, F. (2024). Review on oxygen release mechanism and modification strategy of nickel-rich NCM cathode materials for lithium-ion batteries: Recent advances and future directions. Energy Fuels, 38(7), 5607–5631. DOI: 10.1021/acs.energyfuels.3c04636.
- Xu, X., Han, X., Lu, L., Zhang, Z., Wang, F., Yang, M., Liu, X., Wu, Y., Tang, S., Hou, Y., Hou, J., Yu, C., & Ouyang, M. (2024). Challenges and opportunities toward long-life lithium-ion batteries. J. Power Sources, 603, 234445. DOI: 10.1016/j.jpowsour.2024.234445.
- Kebede, M. A. (2023). Ni-rich LiNixCoyM1-x-yO2 (NCM; M=Mn, Al) cathode materials for lithiumion batteries: Challenges, mitigation strategies, and perspectives. Curr. Opin. Electrochem., 39, 101261. DOI: 10.1016/j.coelec.2023.101261.
- Yu, L., Liu, X., Feng, S., Jia, S., Zhang, Y., Zhu, J., Tang, W., Wang, J., & Gong, J. (2023). Recent progress on sustainable recycling of spent lithium-ion battery: Efficient and closed-loop regeneration strategies for high-capacity layered NCM cathode materials. Chem. Eng. J., 476, 146733. DOI: 10.1016/j.cej.2023.146733.
- Ning, G. (2020). Optimization of operational conditions for scandium determination in aluminum alloys by inductively coupled plasma optical emission spectrometry. J. Appl. Spectrosc., 87(2), 326–332. DOI: 10.1007/s10812-020-01003-4.
- Gao, Y., Liu, R., & Yang, L. (2013). Application of chemical vapor generation in ICP-MS: A review. Chin. Sci. Bull., 58, 1980–1991. DOI: 10.1007/s11434-013-5751-0.
- Konar, J., Kumari, S., Das, S., & Ranjan, R. (2018). Analysis of major and trace elements of electronic waste materials using microwave digestion and AAS, ICP techniques. J. Metal l. Mater. Sci., 60(1), 21–24.
- Chajduk, E., & Kalbarczyk, P. (2021). Critical comparison of INAA and ICP-MS applied in the characterization of purity of TRISO fuel and substrates to its production. Nukleonika, 66(4), 121–126. DOI: 10.2478/nuka-2021-0018.
- Morgado, V., Palma, C., & Bettencourt da Silva, R. J. N. (2021). Monte Carlo bottom-up evaluation of the uncertainty of complex sample preparation: Elemental determination in sediments. Anal. Chim. Acta, 1175, 338732. DOI: 10.1016/j.aca.2021.338732.
- Yılmaz, D., & Gürol, A. (2021). Study of the relationship between different intensity ratios and effective atomic number in diluted uranium samples. Radiat. Phys. Chem., 179, 109213. DOI: 10.1016/j.radphyschem.2020.109213.
- Turek-Fijak, A., Brania, J., Styszko, K., Zięba, D., Stęgowski, Z., & Samek, L. (2021). Chemical characterization of PM10 in two small towns located in South Poland. Nukleonika, 66(1), 29–34. DOI: 10.2478/nuka-2021-0004.
- Liu, Y., Zhang, Q., Zhang, J., Bai, H., & Ge, L. (2019). Quantitative energy-dispersive X-ray fluorescence analysis for unknown samples using full-spectrum least-squares regression. Nucl. Sci. Tech., 30(3), 52. DOI: 10.1007/s41365-019-0564-8.
- Gao, X., Song, W., Deng, S., & Hu, J. (2017). Practical X-ray spectrum analysis. Beijing: Chemical Industry Press. (In Chinese).
- Liang, Y. (2007). Fundamentals of X-ray fluorescence spectroscopy. Beijing: Science Press. (In Chinese).
- Sharpe, L. R. (2024). Exploring matrix effects on the determination of iron in soil using X-ray fluorescence. J. Chem. Educ., 101(3), 1227–1232. DOI: 10.1021/acs.jchemed.3c01032.
- Xiao, L. I. U., & Xiuchun, Z. (2024). On-site determination of lithium in hot spring water by portable Li-K analyzer. Rock and Mineral Analysis, 43(3), 517–523. DOI: 10.15898/j.ykcs.202308070125. (In Chinese).
- Tertian, R., & Claisse, F. (1982). Principles of quantitative X-ray fluorescence analysis. Heyden.
- Shiraiwa, T., & Fujino, N. (1966). Theoretical calculation of fluorescent X-ray intensities in fluorescent X-ray spectrochemical analysis. Jpn. J. Appl. Phys., 5(10), 886. DOI: 10.1143/JJAP.5.886.
- Zhang, Y., Yao, Z., Tang, B., Liu, Z., Gong, R., Li, B., Cheng, Z., & Hu, B. (2021). In situ experimental measurement of mercury by combining PGNAA and characteristic X-ray fluorescence. Appl. Radiat. Isot., 168, 109488. DOI: 10.1016/j.apradiso.2020.109488.
- Büyükyıldız, M., Boydaş, E., Kurudirek, M., & Öz Orhan, E. (2017). Quantitative X-ray analysis for Cr–Fe binary ferroalloys by using EDXRF–WDXRF techniques. Instrum. Exp. Tech., 60(4), 584–588. DOI: 10.1134/S0020441217040121.
- Li, F., Ge, L., Tang, Z., Chen, Y., & Wang, J. (2020). Recent developments on XRF spectra evaluation. Appl. Spectr. Rev., 55(4), 263–287. DOI: 10.1080/05704928.2019.1580715.