Have a personal or library account? Click to login
Application of improved matrix dilution method in quantitative analysis of Ni-Co-Mn ternary precursor Cover

Application of improved matrix dilution method in quantitative analysis of Ni-Co-Mn ternary precursor

By: Hui Li,  Jizhou Ren,  Jianbo Yang,  Jie Xu,  Rui Li,  Xin Huang and  Wanyi Sun  
Open Access
|Nov 2024

References

  1. Tian, J., Fan, Y., Pan, T., Zhang, X., Yin, J., & Zhang, Q. (2024). A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems. Renew. Sustain. Energy Rev., 189, 113978. DOI: 10.1016/j.rser.2023.113978.
  2. Wang, J., Ma, J., Zhuang, Z., Liang, Z., Jia, K., Ji, G., Zhou, G., & Cheng, H. (2024). Toward direct regeneration of spent lithium-ion batteries: A nextgeneration recycling method. Chem. Rev., 124(5), 2839–2887. DOI: 10.1021/acs.chemrev.3c00884.
  3. Duan, Y., Chen, S., Zhang, L., Guo, L., & Shi, F. (2024). Review on oxygen release mechanism and modification strategy of nickel-rich NCM cathode materials for lithium-ion batteries: Recent advances and future directions. Energy Fuels, 38(7), 5607–5631. DOI: 10.1021/acs.energyfuels.3c04636.
  4. Xu, X., Han, X., Lu, L., Zhang, Z., Wang, F., Yang, M., Liu, X., Wu, Y., Tang, S., Hou, Y., Hou, J., Yu, C., & Ouyang, M. (2024). Challenges and opportunities toward long-life lithium-ion batteries. J. Power Sources, 603, 234445. DOI: 10.1016/j.jpowsour.2024.234445.
  5. Kebede, M. A. (2023). Ni-rich LiNixCoyM1-x-yO2 (NCM; M=Mn, Al) cathode materials for lithiumion batteries: Challenges, mitigation strategies, and perspectives. Curr. Opin. Electrochem., 39, 101261. DOI: 10.1016/j.coelec.2023.101261.
  6. Yu, L., Liu, X., Feng, S., Jia, S., Zhang, Y., Zhu, J., Tang, W., Wang, J., & Gong, J. (2023). Recent progress on sustainable recycling of spent lithium-ion battery: Efficient and closed-loop regeneration strategies for high-capacity layered NCM cathode materials. Chem. Eng. J., 476, 146733. DOI: 10.1016/j.cej.2023.146733.
  7. Ning, G. (2020). Optimization of operational conditions for scandium determination in aluminum alloys by inductively coupled plasma optical emission spectrometry. J. Appl. Spectrosc., 87(2), 326–332. DOI: 10.1007/s10812-020-01003-4.
  8. Gao, Y., Liu, R., & Yang, L. (2013). Application of chemical vapor generation in ICP-MS: A review. Chin. Sci. Bull., 58, 1980–1991. DOI: 10.1007/s11434-013-5751-0.
  9. Konar, J., Kumari, S., Das, S., & Ranjan, R. (2018). Analysis of major and trace elements of electronic waste materials using microwave digestion and AAS, ICP techniques. J. Metal l. Mater. Sci., 60(1), 21–24.
  10. Chajduk, E., & Kalbarczyk, P. (2021). Critical comparison of INAA and ICP-MS applied in the characterization of purity of TRISO fuel and substrates to its production. Nukleonika, 66(4), 121–126. DOI: 10.2478/nuka-2021-0018.
  11. Morgado, V., Palma, C., & Bettencourt da Silva, R. J. N. (2021). Monte Carlo bottom-up evaluation of the uncertainty of complex sample preparation: Elemental determination in sediments. Anal. Chim. Acta, 1175, 338732. DOI: 10.1016/j.aca.2021.338732.
  12. Yılmaz, D., & Gürol, A. (2021). Study of the relationship between different intensity ratios and effective atomic number in diluted uranium samples. Radiat. Phys. Chem., 179, 109213. DOI: 10.1016/j.radphyschem.2020.109213.
  13. Turek-Fijak, A., Brania, J., Styszko, K., Zięba, D., Stęgowski, Z., & Samek, L. (2021). Chemical characterization of PM10 in two small towns located in South Poland. Nukleonika, 66(1), 29–34. DOI: 10.2478/nuka-2021-0004.
  14. Liu, Y., Zhang, Q., Zhang, J., Bai, H., & Ge, L. (2019). Quantitative energy-dispersive X-ray fluorescence analysis for unknown samples using full-spectrum least-squares regression. Nucl. Sci. Tech., 30(3), 52. DOI: 10.1007/s41365-019-0564-8.
  15. Gao, X., Song, W., Deng, S., & Hu, J. (2017). Practical X-ray spectrum analysis. Beijing: Chemical Industry Press. (In Chinese).
  16. Liang, Y. (2007). Fundamentals of X-ray fluorescence spectroscopy. Beijing: Science Press. (In Chinese).
  17. Sharpe, L. R. (2024). Exploring matrix effects on the determination of iron in soil using X-ray fluorescence. J. Chem. Educ., 101(3), 1227–1232. DOI: 10.1021/acs.jchemed.3c01032.
  18. Xiao, L. I. U., & Xiuchun, Z. (2024). On-site determination of lithium in hot spring water by portable Li-K analyzer. Rock and Mineral Analysis, 43(3), 517–523. DOI: 10.15898/j.ykcs.202308070125. (In Chinese).
  19. Tertian, R., & Claisse, F. (1982). Principles of quantitative X-ray fluorescence analysis. Heyden.
  20. Shiraiwa, T., & Fujino, N. (1966). Theoretical calculation of fluorescent X-ray intensities in fluorescent X-ray spectrochemical analysis. Jpn. J. Appl. Phys., 5(10), 886. DOI: 10.1143/JJAP.5.886.
  21. Zhang, Y., Yao, Z., Tang, B., Liu, Z., Gong, R., Li, B., Cheng, Z., & Hu, B. (2021). In situ experimental measurement of mercury by combining PGNAA and characteristic X-ray fluorescence. Appl. Radiat. Isot., 168, 109488. DOI: 10.1016/j.apradiso.2020.109488.
  22. Büyükyıldız, M., Boydaş, E., Kurudirek, M., & Öz Orhan, E. (2017). Quantitative X-ray analysis for Cr–Fe binary ferroalloys by using EDXRF–WDXRF techniques. Instrum. Exp. Tech., 60(4), 584–588. DOI: 10.1134/S0020441217040121.
  23. Li, F., Ge, L., Tang, Z., Chen, Y., & Wang, J. (2020). Recent developments on XRF spectra evaluation. Appl. Spectr. Rev., 55(4), 263–287. DOI: 10.1080/05704928.2019.1580715.
DOI: https://doi.org/10.2478/nuka-2024-0027 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 195 - 203
Submitted on: Apr 7, 2024
|
Accepted on: Sep 24, 2024
|
Published on: Nov 20, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Hui Li, Jizhou Ren, Jianbo Yang, Jie Xu, Rui Li, Xin Huang, Wanyi Sun, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.