Have a personal or library account? Click to login
Detection of low-dose irradiation of dry fruits by termoluminescence Cover

Detection of low-dose irradiation of dry fruits by termoluminescence

Open Access
|Jun 2024

References

  1. Vantage Market Research & Consultancy Services. (2022). Dry Fruits Market – Global Industry Assessment & Forecast. Retrieved June 15, 2023, from https://www.vantagemarketresearch.com/industry-report/dry-fruits-market-1559.
  2. Research and Markets. (2023, February). Dried Fruits Global Market Report 2023. Retrieved June 15, 2023, from https://www.researchandmarkets.com/report/dried-fruit?gclid=EAIaIQobChMIx6bwvMrE_wIVB-wd7Ch3YfAjVEAAYASAAEgJLsfD_BwE.
  3. Kolek, Z. (2011). The use of ionizing radiation to preserve food. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie, 874, 45–57. https://r.uek.krakow.pl/jspui/handle/123456789/232.
  4. Migdał, W., Gryczka, U., Bertrandt, J., Nowicki, T., & Pytlak, R. (2014). Radiation methods in decision support system for food safety. Nukleonika, 59 (4), 161–168. DOI: 10.2478/nuka-2014-0022.
  5. Guzik, G. P., & Michalik, J. (2021). European intercomparison studies as a tool for perfecting irradiated food detection methods. Nukleonika, 66(3), 91–97. DOI: 10.2478/nuka-2021-0013.
  6. US Food and Drug Administration. (2018, February). Food irradiation: What you need to know. Retrieved June 15, 2023, from https://fda.gov/food/buy-store-serve-safe-food/food-irradiation-what-you-need-know.
  7. FAO/WHO. (1984). Codex general standard for irradiated foods and recommended international code of practice for the operation of radiation facilities used for the treatment of foods. In Codex Alimentarius (Vol. XV). Rome: Codex Alimentarius Commission.
  8. World Health Organization. (1988). Food irradiation: A technique for preserving and improving the safety of food. Geneva, Switzerland: WHO.
  9. World Health Organization. (1999). High dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy. Geneva, Switzerland: WHO. (WHO Technical Report Series 890).
  10. FAO/WHO. (2005). Fruit and vegetable for health. Report of a Joint FAO/WHO Workshop, Kobe, Japan, 2004. Kobe, Japan: World Health Organization and Food and Agriculture Organization of the United Nations.
  11. European Commission. (1999). Directive 1999/2/EC of the European Parliament and of the Council on the approximation of the laws of the Member States concerning foods and food ingredients treated with ionizing radiation. EU.
  12. European Commission. (1999). Directive 1999/3/EC of the European Parliament and of the Council on the establishment of a Community list of foods and food ingredients treated with ionizing radiation. EU.
  13. Cruz-Zaragoza, E., Marcazzó, J., & Chernov, V. (2012). Photo- and thermally stimulated luminescence of polyminerals extracted from herbs and spices. Radiat. Phys. Chem., 81 (8), 1227–1231. DOI: 10.1016/j.radphyschem.2012.01.024.
  14. European Food Safety Authority. (2011). Scientific opinion on the chemical safety of irradiation of food. EFSA Journal, 9(10), 23–93. DOI: 10.2903/j.efsa.2011.1930.
  15. Arvanitoyannis, I. S. (2010). Irradiation of food commodities: techniques, applications, detection, legislation, safety and consumer opinion. London, UK: Academic Press.
  16. Piniero, M., & Diaz, L. B. (2007). Improving the safety and quality of fresh fruit and vegetables (FFV): A practical approach. Acta Hortic., 741, 19–24. DOI: 10.17660/ActaHortic.2007.741.1.
  17. Kume, T., Furuta, M., Todoriki, S., Uenoyama, N., & Kobayashi, Y. (2009). Status of food irradiation in the world. Radiat. Phys. Chem., 78(3), 222–226. DOI: 10.1016/j.radphyschem.2008.09.009.
  18. Kume, T., & Todoriki, S. (2013). Food irradiation in Asia, the European Union, and the United States: A status update. Radioisotopes, 62, 291–299. DOI: 10.3769/radioisotopes.62.291.
  19. Roberts, P. B. (2014). Food irradiation is safe: Half a century of studies. Radiat. Phys. Chem., 105, 78–82. DOI: 10.1016/j.radphyschem.2014.05.016.
  20. European Food Safety Authority. (2011). Scientific opinion on the chemical safety of irradiation of food. EFSA Journal, 9(10), 23–93. DOI: 10.2903/j.efsa.2011.1930.
  21. Ihsanullah, I., & Rashid, A. (2017). Current activities in food irradiation as a sanitary and phytosanitary treatment in the Asia and Pacific Region and a comparison with advanced countries. Food Control, 72, 345–359. DOI: 10.1016/j.foodcont.2016.03.011.
  22. European Committee for Standardization. (2001). Foodstuffs – Thermoluminescence detection of irradiated food from which silicate minerals can be isolated. EN 1788:2001. EU, Brussels, Belgium.
  23. Sanderson, D. C. W., Schreiber, G. A., & Carmichael, L. A. (1991). A European trial of TL detection of irradiated herbs and spices. (Scottish Universities Research Reactor Center Report to BCR).
  24. Schreiber, G. A., Wagner, U., Leffke, A., Helle, N., Ammon, J., Buchholtz, H.-V., Delincée, H., Estendorfer, S., Fuchs, K., von Grabowski, H.-U., Kruspe, W., Mainczyk, K., Münz, H., Nootenboom, H., Schleich, C., Vreden, N., Wiezorek, C. & Bögl, K. W. (1993). Thermoluminescence analysis to detect irradiated spices, herbs and spice- and herbs mixtures – an intercomparison study. Instituts für Sozialmedizin und Epidemiologie des Bundesgesundheitsamtes. Berlin: German Federal Health Office (Bundesgesundheitsamt). (SozEp-Heft 2/1993).
  25. Schreiber, G. A., Helle, N., & Bögl, K. W. (1995). An inter-laboratory trial on the identification of irradiated spices, herbs and spice-herbs mixtures by thermoluminescence analysis. J. AOAC Int., 78 (1), 88–93. DOI: 10.1093/jaoac/78.1.88.
  26. Sanderson, D. C. W., Slater, C., & Cairns, K. J. (1989). Detection of irradiated food. Nature, 340, 23–24. DOI: 10.1038/340023b0.
  27. Sanderson, D. C. W., Slater, C., & Cairns, K. J. (1989). Thermoluminescence of foods: Origins and implications for detecting irradiation. Radiat. Phys. Chem., 34(6), 915–924. DOI: 10.1016/1359-0197(89)90329-9.
  28. Sanderson, D. C. W. (1990). Luminescence detection of irradiated foods. In D. E. Johnston & M. H. Stevenson (Eds.), Food irradiation and the chemist (pp. 25–56). Cambridge: The Royal Society of Chemistry.
  29. Autio, T., & Pinnioja, S. (1990). Identification of irradiated foods by the thermoluminescence of mineral contamination. Z. Lebensm. Unters. Forsch., 191 (3), 177–180. DOI: 10.1007/BF01197616.
  30. Göksu, H. Y., Regulla, D. F., Hietel, B., & Popp, G. (1990). Thermoluminescent dust for identification of irradiated spices. Radiat. Prot. Dosim., 34(1/4), 319–322. DOI: 10.1093/oxfordjournals.rpd.a080912.
  31. Delincée, H. (1992). Detection methods for irradiated food. In Proceedings Symposium “Irradiation for the food sector”, 13 May 1992 (pp. 24–60). Saint-Hyacinthe, Quebec, Canada: Agriculture Canada.
  32. Autio, T., & Pinnioja, S. (1993). Identification of irradiated foods by thermoluminescence of contaminating minerals. In M. Leonardi, J. J. Raffi & J. Belliardo (Eds.), Recent advances on detection of irradiated food (pp. 183–191). Luxembourg: Commission of the European Communities. (EUR-14315).
  33. Pinnioja, S., Autio, T., Niemi, E., & Pensala, O. (1993). Import control of irradiated foods by the thermoluminescence method. Z. Lebensm. Unters. Forsch., 196 (2), 111–115. DOI: 10.1007/bf01185568.
  34. Pinnioja, S. (1993). Suitability of the thermoluminescence method for detection of irradiated foods. Radiat. Phys. Chem., 42(1/3), 397–400. DOI: 10.10.1016/0969-806X(93)90274-X.
  35. Schreiber, G. A., Ziegelmann, B., Quitzsch, G., Helle, N., & Bögl, K. W. (1993). Luminescence techniques to identify the treatment of foods by ionizing radiation. Food Structure, 12(4), 385–396. DOI: 1046-705X/93$5.00+0.00.
  36. Lozano, I. B., Roman-Lopez, J., Tenopala, J. E., Piña-González, H., Guzman-Castañeda, J. I., & Diaz-Gongora, J. A. I. (2023). Thermoluminescence properties and identification of irradiated cocoa beans during long-term storage. Appl. Radiat. Isot., 191, 110532. DOI: 10.1016/j.apradiso.2022.110532.
  37. Calderón, T., Rendell, H. M., Beneitez, P., Townsend, P. D., Millan, A., & Wood, R. (1994). Thermoluminescence spectra of inorganic dust from irradiated herbs and spices. J. Food Sci., 59(5), 1070–1071. DOI: 10.1111/j.1365-2621.1994.tb08192.x.
  38. Ahn, J.-J., Akram, K., Lee, J., Kim, K.-S., & Kwon, J.-H. (2012). Identification of a gamma-irradiated ingredient (garlic powder) in Korean barbeque bauce by thermoluminescence analysis. J. Food Sci., 77(4), C476–C480. DOI: 10.1111/j.1750-3841.2011.02614.x.
  39. Kim, B.-K., Akram, K., Kim, C.-T., Kang, N.-R., Lee, J.-W., Ryang, J.-H., & Kwon, J.-H. (2012). Identification of low amount of irradiated spices (red pepper, garlic, ginger powder) with luminescence analysis. Radiat. Phys. Chem., 81 (8), 1220–1223. DOI: 10.1016/j.radphyschem.2012.01.023.
  40. Kim, B.-K., Kim, C.-T., Park, S. H., Lee, J.-E., Jeong, H.-S., Kim, C.-Y., Lee, J.-K., Yu, M.-A., & Kwon, J.-H. (2015). Application of thermo-luminescence (TL) method for the identification of food mixtures containing irradiated ingredients. Food Anal. Methods, 8, 718–727. DOI: 10.1007/s12161-014-9928-1.
  41. Karampiperi, M., Theologitis, S., & Kazakis, N. A. (2022). Thermoluminescence characterization of minerals extracted from dried oregano for retrospective and/or sterilization dosimetry. Radiat. Meas., 158, 106850. DOI: 10.1016/j.radmeas.2022.106850.
  42. Khan, H. M., & Delincée, H. (1995). Detection of radiation treatment of spices and herbs of Asian origin using thermoluminescence of mineral contaminants. Appl. Radiat. Isot., 46(10), 1071–1075. DOI: 10.1016/0969-8043(95)00193-H.
  43. Park, E.-J., Jang, H.-N., Jo, D., Kim, G.-R., & Kwon, J.-H. (2013). Physicochemical quality and luminescence characteristics of gamma-irradiated dried fish products. Korean J. Food Sci. Technol., 45(2), 167–173. DOI: 10.9721/KJFST.2013.45.2.167.
  44. Arvanitoyannis, I. S., Stratakos, A. C. H., & Mente, E. (2008). Impact of irradiation on fish and seafood shelf life: A comprehensive review of applications and irradiation detection. Crit. Rev. Food Sci. Nutr., 49 (1), 68–112. DOI: 10.1080/10408390701764278.
  45. Sanderson, D. C. W., Carmichael, L. A., Spencer, J. Q., & Naylor, J. D. (1996). Luminescence detection of shellfish. In C. H. McMurray, E. M. Stewart, R. Gray & J. Pearce (Eds.), Detection methods for irradiated foodscurrent status (pp. 139–148). Cambridge, UK: Royal Society of Chemistry.
  46. Pinnioja, S., & Pajo, L. (1995). Thermoluminescence of minerals useful for identification of irradiated seafood. Radiat. Phys. Chem., 46(4/6), 753–756. DOI: 10.1016/0969-806X(95)00255-V
  47. Wong, Y. C., Sin, D. W. M., & Yao, W. Y. (2016). Food irradiation and its detection. In L. M. Nollet & F. Toldra (Eds.), Safety analysis of foods of animal origin (pp. 663–686). Boca Raton, Florida, US: CRC Press.
  48. Raffi, J., Fakirian, A., & Lesgards, G. (1994). Comparison between electron spin resonance and thermoluminescence in view of identification of irradiated aromatic herbs. Ann. Fals. Exp. Chim., 87, 125–134.
  49. Polónia, I., Esteves, M. P., Andrade, M. E., & Empis, J. (1995). Identification of irradiated peppers by electron spin resonance, thermoluminescence and viscosity. Radiat. Phys. Chem., 46(4/6), 757–760. DOI: 10.1016/0969-806X(95)00256-W
  50. Sanderson, D. C. W., Carmichael, L. A., & Fisk, S. (2003). Thermoluminescence detection of irradiated fruits and vegetables: International interlaboratory trial. J. AOAC Int., 86(5), 971–975. DOI: 10.1093/jaoac/86.5.971.
  51. Schreiber, G. A., Wagner, U., Helle, N., Ammon, J., Buchholtz, H.-V., Delincée, H., Estendorfer, S., von Grabowski, H.-U., Kruspe, W., Mainczyk, K., Münz, H., Schleich, C., Vreden, N., Wiezorek, C., & Bögl, K. W. (1993). Thermoluminescence analysis to detect irradiated fruit and vegetables – an intercomparison study. Bericht des Instituts für Sozialmedizin und Epidemiologie des Bundesgesundheitsamtes. Berlin: German Federal Health Office (Bundesgesundheitsamt). (SozEp-Heft 3/1993).
  52. Marchioni, E., Anklam, E., Chabane, S., Delincée, H., Douifi, L., Hungerbühler, H., Pelleau, Y., Pinnioja, S., Raffi, J., Sanderson, D., & Wagner, U. (1999). Detection by thermoluminescence of an irradiation treatment of five species of dehydrated fruit and vegetables. Report on a CTCPA/AIFLD International Interlaboratory Study. Karlsruhe: Bundesforschungsanstalt für Ernährung. (BFE-R-99-02).
  53. Akram, K., Ahn, J.-J., Kim, G.-R., & Kwon, J.-H. (2012). Applicability of different analytical methods for the identification of γ-irradiated fresh mushrooms during storage. Food Sci. Biotechnol., 21 (2), 573–579. DOI: 10.1007/s10068-012-0073-6.
  54. Arvanitoyannis, I. S., Stratakos, A. C. H., & Tsarouhas, P. (2009). Irradiation application in vegetables and fruits: A review. Crit. Rev. Food Sci. Nutr., 49(5), 427–462. DOI: 10.1080/10408390802067936.
  55. Todoriki, S., Kameya, H., Saito, K., & Hagiwara, S. (2014). Detection of commercially irradiated potatoes by thermoluminescence and photostimulated luminescence analyses. Food Sci. Technol. Res., 23 (3), 555–561. DOI: 10.3136/fstr.20.555.
  56. Ahn, J. J., Kim, G. R., Akram, K., Kim, K. S., & Kwon, J. H. (2012). Effect of storage conditions on photostimulated luminescence of irradiated garlic and potatoes. Food Res. Int., 47(2), 315–320. DOI: 10.1016/j.foodres.2011.07.031.
  57. Ahn, J. J., Kim, G. R., Akram, K., Kim, K. S., & Kwon, J. H. (2012). Luminescence characteristics of minerals separated from irradiated onions during storage under different light conditions. Radiat. Phys. Chem., 81 (8), 1215–1219. DOI: 10.1016/j.radphyschem.2012.02.002.
  58. Yazici, A. N., Bedir, M., Bozkurt, H., & Bozkurt, H. (2008). Thermoluminescence properties of irradiated chickpea and corn. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 266(4), 613–620. DOI: 10.1016/j.nimb.2007.11.044.
  59. Khan, H. M., Bhatti, I. A., & Delincée, H. (2002). Thermoluminescence of contaminating minerals for the detection of radiation treatment of dried fruits. Radiat. Phys. Chem., 63(3/6), 403–406. DOI: 10.1016/S0969-806X(01)00630-2.
  60. Sanderson, D. C. W., Carmichael, L. A., & Naylor, J. D. (1996). Recent advances in thermoluminescence and photostimulated luminescence detection methods for irradiated foods. In C. H. McMurray, E. M. Stewart, R. Gray & J. Pearce (Eds.), Detection methods for irradiated foodscurrent status (pp. 124–138). Cambridge, UK: Royal Society of Chemistry.
  61. Heide, L., Guggenberger, R., & Bögl, K. W. (1990). Application of thermoluminescence measurements to detect irradiated strawberries. J. Agric. Food Chem., 38(12), 2160–2163. DOI: 10.1021/jf00102a012.
  62. Sillano, O., Román, A., Oeza, A., Rubio, T., & Espinoza, J. (1994). Application of thermoluminescence measurements to detect low dose gamma-irradiated table grapes. Radiat. Phys. Chem., 43(6), 585–588. DOI: 10.1016/0969-806X(94)90172-4.
  63. Khan, H. M., & Delincée, H. (1995). Detection of irradiation treatment of dates using thermoluminescence of mineral contaminants. Radiat. Phys. Chem., 46(4/6), 717–720. DOI: 10.1016/0969-806X(95)00248-V.
  64. Khan, H. M., Bhatti, I. A., & Delincée, H. (1998). Identification of irradiated pulses by thermoluminescence of the contaminating minerals. Radiat. Phys. Chem., 52 (1/6), 145–149. DOI: 10.1016/S0969-806X(98)00064-4.
  65. Leffke, A., Helle, N., Linke, B., Bögl, K. W., & Schreiber, G. A. (1993). Studies on detection of irradiated citrus fruit and grains: Germination and some other techniques. In M. Leonardi, J. J. Raffi & J.-J. Belliardo (Eds.), Recent advances on detection of irradiated food. Proceedings (pp. 111–121). Luxembourg: Commission of the European Communities. (EUR/14315/en).
  66. Jo, D., Kim, B.-K., Kausar, T., & Kwon, J.-H. (2008). Study of photostimulated- and thermo-luminescence characteristics for detecting irradiated kiwifruit. J. Agric. Food Chem., 56(4), 1180–1183. DOI: 10.1021/jf072568y.
  67. European Committee for Standardization. (2022). Foodstuffs – Detection of irradiated foodstuff containing crystalline sugar by ESR spectroscopy. PN-EN 13708:2022. European Union, Brussels, Belgium.
  68. Guzik, G. P., Stachowicz, W., & Michalik, J. (2008). Study on stable radicals produced by ionizing radiation in dried fruits and related sugars by electron paramagnetic resonance spectrometry and photostimulated luminescence method – I. D-fructose. Nukleonika, 53(Suppl. 2), S89–S94.
  69. Da Costa, Z. M., Pontuschka, W. M., & Campos, L. L. (2005). A comparative study based on dosimetric properties of different sugars. Appl. Radiat. Isot., 62(2), 331–336. DOI: 10.1016/j.apradiso.2004.08.028.
  70. Guzik, G. P., Stachowicz, W., & Michalik, J. (2015). Identification of irradiated dried fruits using EPR spectroscopy. Nukleonika, 60 (3), 627–631. DOI: 10.1515/nuka-2015-0093.
  71. Guzik, G. P., & Stachowicz, W. (2016). Study on radiation-induced radicals giving rise to stable EPR signal suitable for the detection of irradiation in L-sorbose-containing fruits. Nukleonika, 61 (4), 461–465. DOI: 10.1515/nuka-2016-0075.
  72. Guzik, G. P., Stachowicz, W., & Michalik, J. (2019). Study on irradiated D-mannose isolated from cranberry. Nukleonika, 64(4), 139–143. DOI: 10.2478/nuka-2019-0018.
  73. Yordanov, N. D., Aleksieva, K., & Mansour, I. (2005). Improvement of the EPR detection of irradiated dry plants using microwave saturation and thermal treatment. Radiat. Phys. Chem., 73(1), 55–60. DOI: 10.1016/j.radphyschem.2004.06.008.
  74. Barea Sanchez, M. (2015). Final report of the intercomparison exercise for quality assurance on TL, PSL and EPR irradiated food detection methods (6th round). Spain: Servicio de Toxicologia Alimentaria et Centro Nacional de Alimentacion.
  75. Raffi, J., & Angel, J. P. (1989). Electron spin resonance identification of irradiated fruits. Radiat. Phys. Chem., 34(6), 891–894. DOI: 10.1016/1359-0197(89)90325-1.
  76. Raffi, J., Angel, J. P., & Ahmend, S. H. (1991). Electron spin resonance identification of irradiated dates. Food Technol., 3/4, 26–30.
  77. Karakirova, Y., Yordanov, N. D., De Cooman, H., Vrielinck, H., & Callens, F. (2010). Dosimetric characteristics of different types of saccharides: An EPR and UV spectrometric study. Radiat. Phys. Chem., 79(5), 654–659. DOI: 10.1016/j.radphyschem.2009.12.003.
  78. Raffi, J., Stachowicz, W., Migdał, W., Barabassy, S., Kalman, B., Yordanov, N., Andrade, E., Prost, M., & Callens, F. (1998). Establishment of an eastern network of laboratories for identification of irradiated foodstuffs. Final Report of Copernicus Concerted Action. CCE. (CIPA-CT94-0134).
  79. Vanhaelewyn, G., Jansen, B., Pauwels, E., Sagstuen, E., Waroquier, M., & Callens, F. (2004). Experimental and theoretical electron magnetic resonance study on radiation-induced radicals in α-L-sorbose single crystals. J. Phys. Chem. A, 108(16), 3308–3314. DOI: 10.1021/jp037886o.
  80. Vanhaelewyn, G., Lahorte, P., Proft, F., Mondelaers, W., Geerlings, P., & Callens, F. (2001). Electron magnetic resonance study of stable radicals in irradiated D-fructose single crystals. J. Phys. Chem. Chem. Phys., 3, 1729–1735. DOI: 10.1039/B008248L.
  81. International Organization for Standardization. (2013). Practice for use of the alanine-EPR dosimetry system. ISO/ASTM 51607:2013. Geneva, Switzerland.
DOI: https://doi.org/10.2478/nuka-2024-0023 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 159 - 167
Submitted on: Aug 9, 2023
Accepted on: Jan 5, 2024
Published on: Jun 29, 2024
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Rafał Kocia, Magdalena Miłkowska, Grażyna Liśkiewicz, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.