Have a personal or library account? Click to login
Intermediates derived from p-terphenyl in the methyltributylammonium bis[(trifluoromethyl)sulfonyl]imide ionic liquid saturated with carbon dioxide: Pulse radiolysis study Cover

Intermediates derived from p-terphenyl in the methyltributylammonium bis[(trifluoromethyl)sulfonyl]imide ionic liquid saturated with carbon dioxide: Pulse radiolysis study

By: Rafał Kocia  
Open Access
|Jan 2023

References

  1. Welton, T. (1999). Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev., 99(8), 2071–2084. DOI: 10.1021/cr980032t.
  2. Wasserscheid, P., & Keim, W. (2000). Ionic liquids – new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed., 39(21), 3772–3789. DOI: 1433-7851/00/3921-3773.
  3. Earle, M. J., & Seddon, K. R. (2000). Ionic liquids. Green solvents for the future. Pure Appl. Chem., 72(7), 1391–1398. DOI: 10.1351/pac200072071391.
  4. Rogers, R. D., & Seddon, K. R. (2002). Ionic liquids: Industrial applications to green chemistry. Washington, USA: The American Chemical Society.
  5. Chiappe, C., & Pieraccini, D. (2005). Ionic liquids: Solvent properties and organic reactivity. J. Phys. Org. Chem., 18(4), 275–297. DOI: 10.1002/poc.863.
  6. Jain, N., Kumar, A., Chauhan, S., & Chauhan, S. M. S. (2005). Chemical and biochemical transformations in ionic liquids. Tetrahedron, 61, 1015–1060. DOI: 10.1016/j.tet.2004.10.070.
  7. Zhao, H., Xia, S., & Ma, P. (2005). Use of ionic liquids as ‘green’ solvents for extractions. J. Chem. Technol. Biotechnol., 80(10), 1089–1096. DOI: 10.1002/jctb.1333.
  8. Weyershausen, B., & Lehmann, K. (2005). Industrial application of ionic liquids as performance additives. Green Chem., 7(1), 15–19. DOI: 10.1039/b411357h.
  9. Endres, F., & El Abedin, S. Z. (2006). Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys., 8(18), 2101–2116. DOI: 10.1039/b600519p.
  10. Hough, W. L., Smiglak, M., Rodríguez, H., Swatloski, R. P., Spear, S. K., Daly, D. T., Pernak, J., Grisel, J. E., Carliss, R. D., Soutullo, M. D., Davis, Jr. J. H., & Rogers, R. D. (2007). The third evolution of ionic liquids: active pharmaceutical ingredients. New J. Chem., 31(8), 1429–1436. DOI: 10.1039/b706677p.
  11. Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 37(1), 123–150. DOI: 10.1039/b006677j.
  12. Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater., 8(8), 621–629. DOI: 10.1038/nmat2448.
  13. U.S. Department of Energy National Energy Technology Laboratory. (2013). Program Plan Carbon Capture. Albany: U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, Strategic Center for Coal. www.netl.doe.gov/technologies/carbon_seq/core_rd/co2capture.html.2009.
  14. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., & Johnson, C. A. (2001). Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.
  15. Bates, E. D., Mayton, R. D., Ntai, I., & Davis, Jr. J. H. (2002) CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc., 124(6), 926–927. DOI: 10.1021/ja017593d.
  16. Bara, J. E., Camper, D. E., Gin, D. L., & Noble, R. D. (2010). Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc. Chem. Res., 43(1), 152–159. DOI: 10.1021/ar9001747.
  17. Zhang, Z., Hu, S., Song, J., Li, W., Yang, G., & Han, B. (2009). Hydrogenation of CO2 to formic acid promoted by a diamine-functionalized ionic liquid. ChemSus-Chem., 2(3), 234–238. DOI: 10.1002/cssc.200800252.
  18. Ghavre, M., Morrissey, S., & Gathergood, N. (2011). Hydrogenation in ionic liquid. In A. Kokorin (Ed.), Ionic liquids: Applications and perspectives (pp. 331–392). Rijeka, Croatia, HR: InTech Open Access Publisher.
  19. Blanchard, L. A., Gu, Z. Y., & Brennecke, J. F. (2001). High-pressure phase behavior of ionic liquid/CO2 systems. J. Phys. Chem. B, 105(12), 2437–2444. DOI: 10.1021/jp003309d.
  20. Buzzeo, M. C., Klymenko, O. V., Wadhawan, J. D., Hardacre, C., Seddon, K. R., & Compton, R. G. (2004). Kinetic analysis of the reaction between electrogenerated superoxide and carbon dioxide in the room temperature ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and hexyltriethylammonium bis(trifluoromethyl-sulfonyl) imide. J. Phys. Chem. B, 108(12), 3947–3954. DOI: 10.1021/jp031121z.
  21. Aki, S. N. V. K., Mellein, B. R., Saurer, E. M., & Brennecke, J. F. (2004). High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. J. Phys. Chem. B, 108(52), 20355–20365. DOI: 10.1021/jp046895+.
  22. Anthony, J. L., Anderson, J. L., Maginn, E. J., & Brennecke, J. F. (2005). Anion effects on gas solubility in ionic liquids. J. Phys. Chem. B, 109(13), 6366–6374. DOI: 10.1021/jp046404l.
  23. Cadena, C., Anthony, J. L., Shah, J. K., Morrow, T. I., Brennecke, J. F., & Maginn, E. J. (2004). Why is CO2 so soluble in imidazolium-based ionic liquids? J. Am. Chem. Soc., 126(16), 5300–5308. DOI: 10.1021/ja039615x.
  24. Ohlin, C. A., Dyson, P. J., & Laurenczy, G. (2004). Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation. Chem. Commun., 35(9), 1070–1071. DOI: 10.1039/b401537a.
  25. Husson-Borg, P., Majer, V., & Costa Gomes, M. F. (2003). Solubilities of oxygen and carbon dioxide in butylmethylimidazolium tetrafluoroborate as a function of temperature and at pressures close to atmospheric pressure. J. Chem. Eng. Data, 48(3), 480–485. DOI: 10.1021/je0256277.
  26. Pérez-Salado Kamps, Á., Tuma, D., Xia, J., & Maurer, G. (2003). Solubility of CO2 in the ionic liquid [bmim][PF6]. J. Chem. Eng. Data, 48(3), 746–749. DOI: 10.1021/je034023f.
  27. Evans, R. G., Klymenko, O. V., Saddoughi, S. A., Hardacre, C., & Compton, R. G. (2004). Electroreduction of oxygen in a series of room temperature ionic liquids composed of group 15-centered cations and anions. J. Phys. Chem. B, 108(23), 7878–7886. DOI: 10.1021/jp031309i.
  28. Dyson, P. J., Laurenczy, G., Ohlin, C. A., Vallance, J., & Welton, T. (2003). Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation. Chem. Commun., 9(19), 2418–2419. DOI: 10.1039/B308309H.
  29. Neftel, A., Moor, E., Oeschger, H., & Stauffer, B. (1985). Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature, 315(6014), 45–47. DOI: 10.1038/315045a0.
  30. Harvey, F. (2009, May). The Guardian. Retrieved November 23, 2020, from http://www.guardian.co.uk/environment/2011/may/29/carbon-emissions-nuclearpower.
  31. Peng, J., & Deng, Y. (2001). Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J. Chem., 25(4), 639–641. DOI: 10.1039/B008923K.
  32. Yang, H., Gu, Y., Deng, Y., & Shi, F. (2002). Electrochemical activation of carbon dioxide in ionic liquids: synthesis of cyclic carbonates at mild reaction conditions. Chem. Commun., 33(3), 274–275. DOI: 10.1039/B108451H.
  33. Harmon, C. D., Smith, W. H., & Costa, D. A. (2001). Criticality calculations for plutonium metal at room temperature in ionic liquid solutions. Radiat. Phys. Chem., 60(3), 157–159. DOI: 10.1016/S0969-806X(00)00336-4.
  34. Behar, D., Gonzales, C., & Neta, P. (2001). Reaction kinetics in ionic liquids: Pulse radiolysis studies of 1-butyl-3-methylimidazolium salts. J. Phys. Chem. A, 105(32), 7607–7614. DOI: 10.1021/jp011405o.
  35. Marcinek, A., Zielonka, J., Gębicki, J., Gordon, C. M., & Dunkin, I. R. (2001). Ionic liquids: Novel media for characterization of radical ions. J. Phys. Chem. A, 105(40), 9305–9309. DOI: 10.1021/jp0117718.
  36. Behar, D., Neta, P., & Schultheisz, C. (2002). Reaction kinetics in ionic liquids as studied by pulse radiolysis: Redox reactions in the solvents methyltributylammonium bis(trifluoromethylsulphonyl)imide and n-butylpyridinium tetrafluoroborate. J. Phys. Chem. A, 106(13), 3139–3147. DOI: 10.1021/jp013808u.
  37. Grodkowski, J., & Neta. P. (2002). Reaction kinetics in the ionic liquid methyltributylammonium bis(trifluoromethylsulfonyl)imide. Pulse radiolysis study of ·CF3 radical reactions. J. Phys. Chem. A, 106(22), 5468–5473. DOI: 10.1021/jp020165p.
  38. Grodkowski, J., & Neta, P. (2002). Reaction kinetics in the ionic liquid methyltributylammonium bis(trifluoromethylsulfonyl)imide. Pulse radiolysis study of 4-mercaptobenzoic acid. J. Phys. Chem. A, 106(39), 9030–9035. DOI: 10.1021/jp020806g.
  39. Grodkowski, J., & Neta, P. (2002). Formation and reaction of Br2·− radicals in the ionic liquid methyltributylammonium bis(trifluoromethylsulfonyl)imide and in other solvents. J. Phys. Chem. A, 106(46), 11130–11134. DOI: 10.1021/jp021498p.
  40. Grodkowski, J., Neta, P., & Wishart, J. F. (2003). Pulse radiolysis study of the reactions of hydrogen atoms in the ionic liquid methyltributylammonium bis[(trifluoromethyl)sulfonyl]imide. J. Phys. Chem. A, 107(46), 9794–9799. DOI: 10.1021/jp035265p.
  41. Wishart, J. F., & Neta, P. (2003). Spectrum and reactivity of the solvated electron in the ionic liquid methyltributylammonium bis(trifluoromethylsulfonyl) imide. J. Phys. Chem. B, 107(30), 7261–7267. DOI: 10.1021/jp027792z.
  42. Skrzypczak, A., & Neta, P. (2003). Diffusion-controlled electron-transfer reactions in ionic liquids. J. Phys. Chem. A, 107(39), 7800–7803. DOI: 10.1021/jp030416+.
  43. Skrzypczak, A., & Neta, P. (2004). Rate constants for reaction of 1,2-dimethylimidazole with benzyl bromide in ionic liquids and organic solvents. Int. J. Chem. Kinet., 36(4), 253–258. DOI: 10.1002/kin.10162.
  44. Grodkowski, J., Nyga, M., & Mirkowski, J. (2005). Formation of Br2·−, BrSCN·− and (SCN)2·− intermediates in the ionic liquid methyltributylammonium bis[(trifluoromethyl)sulfonyl]imide. Pulse radiolysis study. Nukleonika, 50(Suppl. 2), S35–S38.
  45. Wishart, J. F., Lall-Ramnarine, S. I., Rajub, R., Scumpia, A., Bellevue, S., Ragbir, R., & Engel, R. (2005). Effects of functional group substitution on electron spectra and solvation dynamics in a family of ionic liquids. Radiat. Phys. Chem., 72(2/3), 99–104. DOI: 10.1016/j.radphyschem.2004.09.005.
  46. Yang, J., Kondoh, T., Norizawa, K., Nagaishi, R., Taguchi, M., Takahashi, K., Katoh, R., Anishchik, S. V. R., Yoshida, Y., & Tagawa, S. (2008). Picosecond pulse radiolysis: dynamics of solvated electrons in ionic liquid and geminate ion recombination in liquid alkanes. Radiat. Phys. Chem., 77(10/12), 1233–1238. DOI: 10.1016/j.radphyschem.2008.05.031.
  47. Takahashi, K., Sato, T., Katsumura, Y., Yang, J., Kondoh, T., Yoshida, Y., & Katoh, R. (2008). Reactions of solvated electrons with imidazolium cations in ionic liquids. Radiat. Phys. Chem., 77(10/12), 1239–1243. DOI: 10.1016/j.radphyschem.2008.05.042.
  48. Asano, A., Yang, J., Kondoh, T., Norizawa, K., Nagaishi, R., Takahashi, K., & Yoshida, Y. (2008). Molar absorption coefficient and radiolytic yield of solvated electrons in diethylmethyl(2-methoxy)ammonium bis(trifluoromethanesulfonyl)imide ionic liquid. Radiat. Phys. Chem., 77(10/12), 1244–1247. DOI: 10.1016/j.radphyschem.2008.05.032.
  49. Kimura, A., Taguchi, M., Kondoh, T., Yang, J., Yoshida, Y., & Hirota, K. (2008). Study on the reaction of chlorophenols in room temperature ionic liquids with ionizing radiation. Radiat. Phys. Chem., 77(10/12), 1253–1257. DOI: 10.1016/j.radphyschem.2008.05.020.
  50. Wishart, F., Funston, A. M., & Szreder, T. (2006). Radiation chemistry of ionic liquids. In Molten Salts XIV – Proceedings of the International Symposium, 206th ECS Meeting, 3–8 October 2004 (pp. 802–813). Pennington, New Jersey, USA: The Electrochemical Society.
  51. Allen, D., Baston, G., Bradley, A. E., Gorman, T., Haile, A., Hamblett, I., Hatter, J. E., Healey, M. J. F., Hodgson, B., Lewin, R., Lovell, K. V., Newton, B., Pitner, W. R., Rooney, D. W., Sanders, D., Seddon, K. R., Sims, H. E., & Thied, R. C. (2002). An investigation of the radiochemical stability of ionic liquids. Green Chem., 4(2), 152–158. DOI: 10.1039/b111042j.
  52. Shkrob, I. A., Chemerisov, S. D., & Wishart, J. F. (2007). The initial stages of radiation damage in ionic liquids and ionic liquid-based extraction systems. J. Phys. Chem. B, 111(40), 11786–1793. DOI: 10.1021/jp073619x.
  53. Qi, M., Wu, G., Li, Q., & Lu, Y. (2008). γ-Radiation effect on ionic liquid [bmim][BF4]. Radiat. Phys. Chem., 77(7), 877–883. DOI: 10.1016/j.radphyschem.2007.12.007.
  54. Grodkowski, J., Kocia, R., & Mirkowski, J. (2009). Formations of p-terphenyl excited states in the ionic liquid methyltributylammonium bis[(trifluoromethyl) sulfonyl]imide. Pulse radiolysis study. Res. Chem. Intermed., 35, 411–419. DOI: 10.1007/s11164-009-0056-2.
  55. Kocia, R., Grodkowski, J., & Mirkowski, J. (2015). Pulse radiolysis studies of p-terphenyl in the ionic liquid methyltributylammonium bis[(trifluoromethyl)sulfonyl]imide, [MeBu3N][NTf2]. Res. Chem. Intermed., 41, 5079–5093. DOI: 10.1007/s11164-014-1590-0.
  56. Kocia, R. (2019). Pulse radiolysis studies of intermediates derived from p-terphenyl in the oxygenated methyltributylammonium bis[(trifluoromethyl)sulfonyl]imide ionic liquid. Int. J. Chem. Kinet., 51(12), 958–964. DOI: 10.1002/kin.21323.
  57. Carmichael, I., & Hug, G. (1986). Triplet-triplet absorption spectra of organic molecules in condensed phases. J. Phys. Chem. Ref. Data, 15, 1–250. DOI: 10.1063/1.555770.
  58. Shida, T. (1988). Electronic absorption spectra of radical ions. Amsterdam: Elsevier.
  59. Liu, A., Loffredo, D. M., & Trifunac, A. D. (1993). Photoionization and ensuing ion-molecule reactions of polycyclic aromatic hydrocarbons in alkane and alcohol solutions. J. Phys. Chem., 97(15), 3791–3799. DOI: 10.1021/j100117a027.
  60. Fujiwara, H., Kitamura, T., Wada, Y., Yanagida, S., & Kamat, P. V. (1999). Onium salt effects on p-terphenyl-sensitized photoreduction of water to hydrogen. J. Phys. Chem. A, 103(25), 4874–4878. DOI: 10.1021/jp984740u.
  61. Matsuoka, S., Kohzuki, T., Pac, C., Ishida, A., Takamuku, S., Kusaba, M., Nobuaki, N., & Yanagida, S. (1992). Photocatalysis of oligo(p-phenylenes). Photochemical reduction of carbon dioxide with triethylamine. J. Phys. Chem., 96(11), 4437–4445. DOI: 10.1021/j100190a057.
  62. Schuler, R. H., Patterson, L. K., & Janata, E. (1980). Yield for the scavenging of hydroxyl radicals in the radiolysis of nitrous oxide-saturated aqueous solutions. J. Phys. Chem., 84(16), 2088–2089. DOI: 10.1021/j100453a020.
  63. Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O in aqueous solution. J. Phys. Chem. Ref. Data, 17, 513–886. DOI: 10.1063/1.555805.
  64. Gordon, S., Hart, E. J., Matheson, M. S., Rabani, J., & Thomas, J. K. (1963). Reactions of the hydrated electron. Discuss. Faraday Soc., 36, 193–205. DOI: 10.1039/DF9633600193.
  65. Sullivan, B. P., Krist, K., & Guard, H. E. (1993). Electrochemical and electrocatalytic reactions of carbon dioxide. Amsterdam, NL: Elsevier Science Publishers B.V.
  66. Lamy, E., Nadjo, L., & Saveant, J. M. (1977). Standard potential and kinetic parameters of the electrochemical reduciton of carbon dioxide in dimethyformamide. J. Electroanal. Chem., 78(2), 403–407. DOI: 10.1016/S0022-0728(77)80143-5.
  67. Dhanasekaran, T., Grodkowski, J., Neta, P., Hambright, P., & Fujita, E. (1999). p-Terphenyl-sensitized photoreduction of CO2 with cobalt and iron porphyrins. Interaction between CO and reduced metalloporphyrins. J. Phys. Chem. A, 103(38), 7742–7748. DOI: 10.1021/jp991423u.
  68. Grodkowski, J., Dhanasekaran, T., Neta, P., Hambright, P., Brunschwig, B. S., Shinozaki, K., & Fujita, E. (2000). Reduction of cobalt and iron phthalocyanines and the role of the reduced species in catalyzed photoreduction of CO2. J. Phys. Chem. A, 104(48), 11332–11339. DOI: 10.1021/jp002709y.
  69. Grodkowski, J. (2004). Radiolytic and photochemical reduction of carbon dioxide in solution catalyzed by transition metal complexes with some selected macrocycles. Warszawa: Institute of Nuclear Chemistry and Technology. (Raporty IChTJ. Seria A nr 1/2004).
  70. Grodkowski, J., & Neta, P. (2000). Cobalt corrin catalyzed photoreduction of CO2. J. Phys. Chem. A, 104(9), 1848–1853. DOI: 10.1021/jp9939569.
  71. Grodkowski, J., Neta, P., Fujita, E., Mahammed, A., Simkhovich, L., & Gross, Z. (2002). Reduction of cobalt and iron corroles and catalyzed reduction of CO2. J. Phys. Chem. A, 106(18), 4772–4778. DOI: 10.1021/jp013668o.
  72. Grodkowski, J., & Neta, P. (2000). Ferrous ions as catalysts for photochemical reduction of CO2 in homogeneous solutions. J. Phys. Chem. A, 104(19), 4475–4479. DOI: 10.1021/jp993456f.
DOI: https://doi.org/10.2478/nuka-2022-0007 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 73 - 80
Submitted on: Oct 26, 2022
Accepted on: Dec 2, 2022
Published on: Jan 20, 2023
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Rafał Kocia, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.