Have a personal or library account? Click to login
Effect of gamma irradiation on microbiological and nutritional properties of the freeze-dried berries Cover

Effect of gamma irradiation on microbiological and nutritional properties of the freeze-dried berries

Open Access
|Nov 2021

References

  1. Lombrana, J. I. (2008). Fundamentals and tendencies in freeze-drying of food. In C. Ratti (Ed.), Advances in food dehydration (Chapter 8, pp. 209–235). CRC Press.
  2. Pisano, R., Arsiccio, A., Capozzi, L. C., & Trout, B. L. (2019). Achieving continuous manufacturing in lyophilization: Technologies and approaches. Eur. J. Pharm. Biopharm., 142, 265–279. DOI: 10.1016/j.ejpb.2019.06.027.
  3. Aksu, M. İ., Turan, E., & Şat, İ. G. (2020). Effects of lyophilized red cabbage water extract and pH levels on the quality properties of pastırma cemen paste during chilled storage. J. Stored Prod. Res., 89, 101696. DOI: 10.1016/j.jspr.2020.101696.
  4. De Abreu Pinheiro, F., Ferreira Elias, L., de Jesus Filho, M., Uliana Modolo, M., de Cássia Gomes Rocha, J., Fumiere Lemos, M., & Soares Cardoso, W. (2021). Arabica and Conilon coffee flowers: bioactive compounds and antioxidant capacity under different processes. Food Chem., 336, 127701. DOI: 10.1016/j.foodchem.2020.127701.
  5. Lammerskitten, A., Wiktor, A., Siemer, C., Toepfl, S., Mykhailyk, V., Gondek, E., Rybak, K., Witrowa-Rajchert, D., & Parniakov, O. (2019). The effects of pulsed electric fields on the quality parameters of freeze-dried apples. J. Food Eng., 252, 36–43. DOI: 10.1016/j.jfoodeng.2019.02.006.
  6. Różyło, R. (2020). Recent trends in methods used to obtain natural food colorants by freeze-drying. Trends Food Sci. Technol., 102, 39–50. DOI: 10.1016/j.tifs.2020.06.005.
  7. Waghmare, R. B., Perumal, A. B., Moses, J. A., & Anandharamakrishnan, C. (2021). Recent developments in freeze drying of foods. In K. Knoerzer & K. Muthukumarappan (Eds.), Innovative food processing technologies: A comparative review (Vol. 3, pp. 82–99). Cambridge: Elsevier. DOI: 10.1016/b978-0-12-815781-7.00017-2.
  8. Park, J. -N., Sung, N. -Y., Byun, E. -H., Byun, E. -B., Song, B. -S., Kim, J. -H., & Lyu, E. -S. (2015). Microbial analysis and survey test of gamma-irradiated freeze-dried fruits for patient's food. Radiat. Phys. Chem., 111, 57–61. DOI: 10.1016/j.radphyschem.2015.02.011.
  9. International Organization for Standardization. (2009). ISO/ASTM 51538 – Practice for use of the ethanol-chlorobenzene dosimetry system.
  10. Kovács, A., Stenger, V., & Fóldiák, G. (1987) Evaluation methods of the ethanol – monochlorobenzene dosimeter system. In P. Hedvig, L. Nyikos & R. Schiller (Eds.), Proceedings of the 6th Tihany Symposium on Radiation Chemistry (pp. 701–709). Budapest: Akadémiai Kiadó.
  11. Kovács, A., Slezsák, I., McLaughlin, W., & Miller, A. (1995). Oscillometric and conductometric analysis of aqueous and organic dosimeter solutions. Radiat. Phys. Chem., 46(4/6), 1211–1215. DOI: 10.1016/0969-806x(95)00357-4.
  12. Vujčić, I., Mašić, S., Spasevska, H., & Dramicanin, M. (2018). Accuracy of determining absorbed irradiation dose at different temperature measurements using ethanol-chlorobenzene oscillotitrator system. Nucl. Technol. Radiat. Prot., 33(04), 363–368. DOI: 10.2298/NTRP180316004V.
  13. European Directorate for the Quality of Medicines & HealthCare. (2011). European Pharmacopoeia 7.0.
  14. Büchi Labortechnik AG. (2007). Application Note. Hydrolysis Unit E-416, Extraction Unit E-816 Soxhlet. Fat determination according to Weibull-Stoldt – Standard application.
  15. International Organization for Standardization. (2009). ISO 1871:2009 Food and feed products – General guidelines for the determination of nitrogen by the Kjeldahl method.
  16. Kjeldahl, J. (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern (New method for the determination of nitrogen in organic substances). Z. Anal. Chemie, 22(1), 366–383.
  17. Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S., & Lee, Y. C. (2005). Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem., 339(1), 69–72.
  18. Maraei, R. W., & Elsawy, K. M. (2017). Chemical quality and nutrient composition of strawberry fruits treated by γ-irradiation. J. Radiat. Res. Appl. Sci., 10(1), 80–87. DOI: 10.1016/j.jrras.2016.12.004.
  19. Onyenekwe, P. C., Ogbadu, G. H., & Hashimoto, S. (1997). The effect of gamma radiation on the microflora and essential oil of Ashanti pepper (Piper guineense) berries. Postharvest Biol. Technol., 10(2), 161–167. DOI: 10.1016/s0925-5214(96)01297-5.
  20. Jan, K., Bashir, K., & Maurya, V. K. (2021). Gamma irradiation and food properties. In K. Knoerzer & K. Muthukumarappan (Eds.), Innovative food processing technologies: A comparative review (Vol. 3, pp. 41–60). Cambridge: Elsevier. DOI: 10.1016/B978-0-08-100596-5.23052-7.
  21. World Health Organization. (1999). High-dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy. Report of a Joint FAO/IAEA/WHO study group. Geneva: WHO. (Technical Report Series 890).
DOI: https://doi.org/10.2478/nuka-2021-0032 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 221 - 225
Submitted on: Dec 2, 2020
Accepted on: Feb 19, 2021
Published on: Nov 25, 2021
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Slobodan Mašić, Ivica Vujčić, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.