Have a personal or library account? Click to login
Research on Tool Wear State Recognition Method Based on Multi-Scale Feature Extraction and Deep Residual Network Fusion Cover

Research on Tool Wear State Recognition Method Based on Multi-Scale Feature Extraction and Deep Residual Network Fusion

Open Access
|Jan 2026

References

  1. Pimenov, D. Y., Gupta, M. K., da Silva, L. R. R., Kiran, M., Khanna, N., Krolczyk, G. M. (2022). Application of measurement systems in tool condition monitoring of Milling: A review of measurement science approach. Measurement, 199, 111503. https://doi.org/10.1016/j.measurement.2022.111503
  2. Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals, 59 (2), 717–739. https://doi.org/10.1016/j.cirp.2010.05.010
  3. Abellan-Nebot, J. V., Subirón, F. R. (2010). A review of machining monitoring systems based on artificial intelligence process models. The International Journal of Advanced Manufacturing Technology, 47 (1), 237–257. https://doi.org/10.1007/s00170-009-2191-8
  4. Cai, W., Zhang, W., Hu, X., Liu, Y. (2020). A hybrid information model based on long short-term memory network for tool condition monitoring. Journal of Intelligent Manufacturing, 31, 1497–1510. https://doi.org/10.1007/s10845-019-01526-4
  5. Wu, X., Li, J., Jin, Y., Zheng, S. (2020). Modeling and analysis of tool wear prediction based on SVD and BiLSTM. The International Journal of Advanced Manufacturing Technology, 106, 4391–4399. https://doi.org/10.1007/s00170-019-04916-3
  6. Wang, J., Ma, Y., Zhang, L., Gao, R. X., Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, 48, 144–156. https://doi.org/10.1016/j.jmsy.2018.01.003
  7. Nasir, V., Sassani F. (2021). A review on deep learning in machining and tool monitoring: Methods, opportunities, and challenges. The International Journal of Advanced Manufacturing Technology, 115, 2683–2709. https://doi.org/10.1007/s00170-021-07325-7
  8. Cheng, M., Jiao, L., Shi, X., Wang, X., Yan, P., Li, Y. (2020). An intelligent prediction model of the tool wear based on machine learning in turning high strength steel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 234 (13), 1580–1597. http://dx.doi.org/10.1177/0954405420935787
  9. Liu, M.-K., Tseng, Y.-H., Tran, M.-Q. (2019). Tool wear monitoring and prediction based on sound signal. The International Journal of Advanced Manufacturing Technology, 103, 3361–3373. https://doi.org/10.1007/s00170-019-03686-2
  10. Guo, J., Li, A., Zhang, R. (2020). Tool condition monitoring in milling process using multifractal detrended fluctuation analysis and support vector machine. The International Journal of Advanced Manufacturing Technology, 110, 1445–1456. https://doi.org/10.1007/s00170-020-05931-5
  11. Mohanraj, T., Yerchuru, J., Krishnan, H., Nithin Aravind, R. S., Yameni, R. (2021). Development of tool condition monitoring system in end milling process using wavelet features and Hoelder’s exponent with machine learning algorithms. Measurement, 173, 108671. https://doi.org/10.1016/j.measurement.2020.108671
  12. Shi, C., Panoutsos, G., Luo, B., Liu, H., Li, B., Liu, X. (2019). Using multiple-feature-spaces-based deep learning for tool condition monitoring in ultraprecision manufacturing. IEEE Transactions on Industrial Electronics, 66 (5), 3794–3803. https://doi.org/10.1109/TIE.2018.2856193
  13. Ma, M., Sun, C., Chen, X., Zhang, X., Yan, R. (2019). A deep coupled network for health state assessment of cutting tools based on fusion of multisensory signals. IEEE Transactions on Industrial Informatics, 15 (12), 6415–6424. https://doi.org/10.1109/TII.2019.2912428
  14. Zhang, K., Chen, J., Zhang, T., Zhou, Z. (2020). A compact convolutional neural network augmented with multiscale feature extraction of acquired monitoring data for mechanical intelligent fault diagnosis. Journal of Manufacturing Systems, 55, 273–284. https://doi.org/10.1016/j.jmsy.2020.04.016
  15. He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 770–778. https://doi.org/10.1109/CVPR.2016.90
  16. He, K., Zhang, X., Ren, S., Sun, J. (2016). Identity mappings in deep residual networks. In Computer Vision – ECCV 2016. Springer, LNIP 9908, 630–645. https://doi.org/10.1007/978-3-319-46493-0_38
  17. Zhang, K., Tang, B., Deng, L., Liu, X. (2021). A hybrid attention improved ResNet based fault diagnosis method of wind turbines gearbox. Measurement, 179, 109491. https://doi.org/10.1016/j.measurement.2021.109491
  18. Gabor, D. (1946). Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering, 93 (26), 429–441. https://doi.org/10.1049/ji-3-2.1946.0074
  19. Burrus, C., Gopinath, R., Guo, H. (1997). Introduction to Wavelets and Wavelet Transforms: A Primer. Pearson, ISBN 978-0134896007.
  20. Claasen, T. A. C. M., Mecklenbrauker, W. F. G. (1980). The Wigner distribution - a tool for time-frequency signal analysis. Part II: Discrete time signals. Philips Journal of Research, 35 (4), 276–300.
Language: English
Page range: 14 - 23
Submitted on: May 19, 2025
|
Accepted on: Nov 12, 2025
|
Published on: Jan 5, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2026 Erliang Liu, Cong Liu, Yuhang Du, Baiwei Zhu, Limin Shi, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.