Have a personal or library account? Click to login
Enhancing the Performance of Pulse Position Coded Excitation for Photoacoustic Imaging by Denoising Autoencoder Cover

Enhancing the Performance of Pulse Position Coded Excitation for Photoacoustic Imaging by Denoising Autoencoder

Open Access
|Jan 2026

References

  1. Beard, P. (2011). Biomedical PA imaging. Interface Focus, 1 (4), 602–631. https://doi.org/10.1098/rsfs.2011.0028
  2. Wang, L.V., Hu, S. (2012). Photoacoustic tomography: In vivo imaging from organelles to organs. Science, 335 (6075), 1458–1462. https://doi.org/10.1126/science.1216210
  3. Xu, M., Wang, L. V. (2006). Photoacoustic imaging in biomedicine. Review of Scientific Instruments, 77, 041101. https://doi.org/10.1063/1.2195024
  4. Upputuri, P. K., Pramanik, M. (2016). Recent advances toward preclinical and clinical translation of photoacoustic tomography: A review. Journal of Biomedical Optics, 22 (4), 041006. https://doi.org/10.1117/1.JBO.22.4.041006
  5. Wang, T., Nandy, S., Salehi, H. S., Kumavor, P. D., Zhu, Q. (2014). A low-cost photoacoustic microscopy system with a laser diode excitation. Biomedical Optics Express, 5 (9), 3053–3058. https://doi.org/10.1364/BOE.5.003053
  6. Upputuri, P. K., Pramanik, M. (2015). Performance characterization of low-cost, high-speed, portable pulsed laser diode photoacoustic tomography (PLD-PAT) system. Biomedical Optics Express, 6 (10), 4118–4129. https://doi.org/10.1364/BOE.6.004118
  7. Upputuri, P. K., Pramanik, M. (2015). Pulsed laser diode based optoacoustic imaging of biological tissues. Biomedical Physics & Engineering Express, 1, 045010. https://doi.org/10.1088/2057-1976/1/4/045010
  8. Gonzalez, R. C., Woods, R. E. (2019). Digital Image Processing, Fourth Edition. Pearson, ISBN 978-9353062989.
  9. Mienkina, M. P., Friedrich, C.-S., Gerhardt, N. C., Wilkening, W. G., Hofmann, M. R., Schmitz, G. (2010). Experimental evaluation of photoacoustic coded excitation using unipolar Golay codes. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57 (7), 1583–1593. https://doi.org/10.1109/TUFFC.2010.1588
  10. Mienkina, M. P., Friedrich, C.-S., Gerhardt, N. C., Beckmann, M. F., Schiffner, M. F., Hofmann, M. R., Schmitz, G. (2010). Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes. Optics Express, 18 (9), 9076–9087. https://doi.org/10.1364/OE.18.009076
  11. Beckmann, M. F., Schmitz, G. (2013). Photoacoustic coded excitation using pulse position modulation. In 2013 IEEE International Ultrasonics Symposium (IUS). IEEE, 1853–1856. https://doi.org/10.1109/ULTSYM.2013.0472
  12. Allman, D., Reiter, A., Bell, M. A. L. (2018). Photoacoustic source detection and reflection artifact removal enabled by deep learning. IEEE Transactions on Medical Imaging, 37 (6), 1464–1477. https://doi.org/10.1109/TMI.2018.2829662
  13. Lee, S.-E., Park, J., Kim, H.-J., Song, S.-J. (2023). Extraction of flaw signals from the mixed 1-D signals by denoising autoencoder. Applied Sciences, 13 (6), 3534. https://doi.org/10.3390/app13063534
  14. Abouzid, H., Chakkor, O., Reyes, O. G., Ventura, S. (2019). Signal speech reconstruction and noise removal using convolutional denoising audioencoders with neural deep learning. Analog Integrated Circuits and Signal Processing, 100, 501–512. https://doi.org/10.1007/s10470-019-01446-6
  15. Fusco, A., Krueger, M., Servadei, L., Wille, R. (2023). A deep learning approach for artifact suppression in MEMS-based airborne ultrasonic transceivers. In 2023 IEEE International Ultrasonics Symposium (IUS). IEEE. https://doi.org/10.1109/IUS51837.2023.10308240
  16. Treeby, B. E., Jaros, J., Cox, B. T. (2016). Advanced photoacoustic image reconstruction using the k-Wave toolbox. In Photons Plus Ultrasound: Imaging and Sensing 2016. SPIE, 9708, 517–530. https://doi.org/10.1117/12.2209254
  17. Treeby, B. E., Zhang, E. Z., Cox, B. T. (2010). Photoacoustic tomography in absorbing acoustic media using time reversal. Inverse Problems, 26 (11), 115003. https://doi.org/10.1088/0266-5611/26/11/115003
  18. Glorot, X., Bordes, A., Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR, 15, 315–323.
  19. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15 (56), 1929–1958.
  20. Heinz, C., Reiner, M., Belka, C., Walter, F., Söhn, M. (2015). Technical evaluation of different respiratory monitoring systems used for 4D CT acquisition under free breathing. Journal of Applied Clinical Medical Physics, 16 (2), 334–349. https://doi.org/10.1120/jacmp.v16i2.4917
Language: English
Page range: 1 - 9
Submitted on: Mar 7, 2025
|
Accepted on: Oct 20, 2025
|
Published on: Jan 5, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2026 Abdulrhman Alshaya, Suhail Alshahrani, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.