Have a personal or library account? Click to login
Grain Truck Compartment Localization Method based on Point Cloud Projection Cover

Grain Truck Compartment Localization Method based on Point Cloud Projection

Open Access
|Jun 2025

References

  1. Nuttall, J. G., Oleary, G. J., Panozzo, J. F., Walker, C. K., Barlow, K. M., Fitzgerald, G. J. (2017). Models of grain quality in wheat—A review. Field Crops Research, 202, 136–145. https://doi.org/10.1016/j.fcr.2015.12.011
  2. Qiao, X., Gao, S., Cao, W., Wang, C., Liu, J., Zhou, K. (2023). A point cloud segmentation and material statistics algorithm for train carriage. Measurement and Control, 56, 537–545. https://doi.org/10.1177/00202940221092043
  3. Zou, W., Shen, D., Cao, P., Lin, C., Zhu, J. (2022). Fast positioning method of truck compartment based on plane segmentation. IEEE Journal of Radio Frequency Identification, 6, 774–778. https://doi.org/10.1109/JRFID.2022.3213852
  4. Yu, J., Huang, L., Tang, H., Huang, G., Chen, G. (2022). Incoming vehicle detection and planning system for automatic vehicle loading. Applied Laser, 42, 91–100. https://doi.org/10.14128/j.cnki.al.20224201.091
  5. Ren, W. (2019). Research on automatic loading machine for bagged cement. Master's Thesis, University of Science and Technology of China.
  6. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J. J. (2016). Past, present, an future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32, 1309–1332. https://doi.org/10.1109/TRO.2016.2624754
  7. Fuentes-Pacheco, J., Ruiz-Ascencio, J., Rendón-Mancha, J. M. (2015). Visual simultaneous localization and mapping: A survey. Artificial Intelligence Review, 43, 55–81. https://doi.org/10.1007/s10462-012-9365-8
  8. Yang, Y., Jia, B., Yan, X.-Y., Li, J., Yang, Z., Gao, Z. (2022). Identifying intercity freight trip ends of heavy trucks from GPS data. Transportation Research Part E: Logistics and Transportation Review, 157, 102590. https://doi.org/10.1016/j.tre.2021.102590
  9. Markham, G., Seiler, K. M., Balamurali, M., Hill, A. J. (2022). Load-haul cycle segmentation with hidden semi-Markov models. In 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE). IEEE, 447–454. https://doi.org/10.1109/CASE49997.2022.9926488
  10. Ai, L., Xie, Z., Yao, R., Li, L. (2023). R-VPCG: RGB image feature fusion-based virtual point cloud generation for 3D car detection. Displays, 77, 102390. https://doi.org/10.1016/j.displa.2023.102390
  11. Jurado-Rodríguez, D., Jurado, J. M., Pádua, L., Neto, A., Muñoz-Salinas, R., Sousa, J. J. (2022). Semantic segmentation of 3D car parts using UAV-based images. Computers & Graphics, 107, 93–103. https://doi.org/10.1016/j.cag.2022.07.008
  12. Mrovlje, J., Vrančić, D. (2012). Automatic detection of the truck position using stereoscopy. In 2012 IEEE International Conference on Industrial Technology. IEEE, 755–759. https://doi.org/10.1109/ICIT.2012.6210029
  13. Li, S., Han, L., Dong, P., Sun, W. (2022). Algorithm for measuring the outer contour dimension of trucks using uav binocular stereo vision. Sustainability, 14 (22), 14978. https://doi.org/10.3390/su142214978
  14. Fan, X., Xu, G., Li, W., Wang, Q., Chang, L. (2019). Target segmentation method for three-dimensional LIDAR point cloud based on depth image. Chinese Journal of Lasers, 46, 7–15. https://doi.org/10.3788/CJL201946.0710002
  15. Sahin, O., Nezafat, R. V., Cetin, M. (2022). Methods for classification of truck trailers using side-fire light detection and ranging (LiDAR) data. Journal of Intelligent Transportation Systems, 26 (1), 1–13. https://doi.org/10.1080/15472450.2020.1733999
  16. Sahin, O., Cetin, M., Ustun, I. (2021). Detecting empty and loaded platform semi-trailers using side-fire LiDAR data for supporting freight analysis. Case Studies on Transport Policy, 9 (3), 1035–1041. https://doi.org/10.1016/j.cstp.2021.05.006
  17. Wei, S., Niu, D., Li, Q., Chen, X., Liu, J. (2019). A 3D vehicle recognition system based on point cloud library. In 2019 Chinese Control Conference (CCC). IEEE, 7023–7027. https://doi.org/10.23919/ChiCC.2019.8865898
  18. Wang, S., Zhang, H., Wang, G., Liu, R., Huo, J., Chen, B. (2022). FGRSC: Improved calibration for spinning LiDAR in unprepared scenes. IEEE Sensors Journal, 22 (14), 14250–14262. https://doi.org/10.1109/JSEN.2022.3176979
  19. Wang, S., Zhang, H., Wang, G. (2023). OMC-SLIO: Online multiple calibrations spinning LiDAR inertial odometry. Sensors, 23 (1), 248. https://doi.org/10.3390/s23010248
  20. Suss, A., Rochus, V., Rosmeulen, M., Rottenberg, X. (2016). Benchmarking time-of-flight based depth measurement techniques. In Smart Photonic and Optoelectronic Integrated Circuits XVIII. SPIE, 9751, 199–217. https://doi.org/10.1117/12.2212478
  21. Miao, Y., Li, C., Li, Z., Yang, Y., Yu, X. (2021). A novel algorithm of ship structure modeling and target identification based on point cloud for automation in bulk cargo terminals. Measurement and Control, 54, 155–163. https://doi.org/10.1177/0020294021992804
Language: English
Page range: 64 - 71
Submitted on: May 8, 2024
|
Accepted on: Apr 9, 2025
|
Published on: Jun 7, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Haoran Ma, Bei Peng, Guochuan Zhao, Shuang Wang, Yun Rong, Yibo Li, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.