References
- Hu, J., Vasilakos, A. V. (2016). Energy big data analytics and security: Challenges and opportunities. IEEE Transactions on Smart Grid, 7 (5), 2423–2436.
https://doi.org/10.1109/TSG.2016.2563461 - Žilvinas, N., Kaškonas, P., Saunoris, M., Daunoras, V., Jurčević, M. (2021). A framework for remote in-service metrological surveillance of energy meters. Measurement, 168, 108438.
https://doi.org/10.1016/j.measurement.2020.108438 - Alonso, A. M., Nogales, F. J., Ruiz, C. (2020). Hierarchical clustering for smart meter electricity loads based on quantile autocovariances. IEEE Transactions on Smart Grid, 11 (5), 4522–4530.
https://doi.org/10.1109/TSG.2020.2991316 - Yao, D., Wen, M., Liang, X., Fu, Z., Zhang, K., Yang, B. (2019). Energy theft detection with energy privacy preservation in the smart grid. IEEE Internet of Things Journal, 6 (5), 7659–7669.
https://doi.org/10.1109/JIOT.2019.2903312 - Borovina, D., Zajc, M., Mujcic, A., Tonello, A., Suljanovic, N. (2020). Error performance analysis and modeling of narrow-band PLC technology enabling smart metering systems. International Journal of Electrical Power & Energy Systems, 116, 105536.
https://doi.org/10.1016/j.ijepes.2019.105536 - Chen, L., Huang, Y., Lu, T., Dang, S., Kong, Z. (2022). Metering equipment running error estimation model based on genetic optimized LM algorithm. Journal of Computational Methods in Sciences and Engineering, 22 (1), 197–205.
https://doi.org/10.3233/JCM-215896 - Cen, W., Zhao, B., Feng, Z., Fu, Y. (2012). The research of smart electricity meter whole performance automatic detection technology. In 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE). IEEE, 431–434.
https://doi.org/10.1109/CSAE.2012.6272808 - Kong, X., Zhang, X., Bai, L. (2022). A remote estimation method of smart meter errors based on neural network filter and generalized damping recursive least square. IEEE Transactions on Industrial Informatics, 18 (1), 219–230.
https://doi.org/10.1109/TII.2021.3074420 - Liu, F., He, Q., Hu, S., Wang, L., Jia, Z. (2018). Estimation of smart meters errors using meter reading data. In 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). IEEE.
https://doi.org/10.1109/CPEM.2018.8501256 - Liu, F., Liang, C., He, Q., Wang, L., Huang, C., Hu, S. (2020). An approach for online smart meter error estimation. In 2020 Conference on Precision Electromagnetic Measurements (CPEM). IEEE.
https://doi.org/10.1109/CPEM49742.2020.9191736 - Xie, W., Zhang, L., Zhang, B., Zhang, W., Wang, P., Qiao, S. (2021). Reliability analysis of intelligent electric energy meter under fusion model illness analysis algorithm. Journal of Sensors, 2021, 2000879.
https://doi.org/10.1155/2021/2000879 - Kong, X., Zhang, X., Lu, N., Ma, Y., Li, Y. (2021). Online smart meter measurement error estimation based on EKF and LMRLS method. IEEE Transactions on Smart Grid, 12 (5), 4269–4279.
https://doi.org/10.1109/TSG.2021.3077693 - Liu, M, Liu, D, Sun, G., Zhao, Y., Wang, D., Liu, F., Fang, X., He, Q., Xu, D. (2020). Deep learning detection of inaccurate smart electricity meters: A case study. IEEE Industrial Electronics Magazine, 14 (4), 79–90.
https://doi.org/10.1109/MIE.2020.3026197 - Duan, J., Zuo, H., Bai, Y., Duan, J., Chang, M., Chen, B. (2021). Short-term wind speed forecasting using recurrent neural networks with error correction. Energy, 217, 119397.
https://doi.org/10.1016/j.energy.2020.119397 - Amarbayasgalan, T., Pham, V. H., Theera-Umpon, N., Ryu, K. H. (2020). Unsupervised anomaly detection approach for time-series in multi domains using deep reconstruction error. Symmetry, 12 (8), 1251.
https://doi.org/10.3390/sym12081251 - Wang, Z., Gong, G., Wen, Y. (2016). Anomaly diagnosis analysis for running meter based on BP neural network. In Proceedings of the 2016 International Conference on Communications, Information Management and Network Security. Atlantis Press, 99–101.
https://doi.org/10.2991/cimns-16.2016.23 - Chen, L., Huang, Y., Lu, T., Dang, S., Zhang, J., Zhao, W., Kong, Z. (2022). Remote error estimation of smart meter based on clustering and adaptive gradient descent method. Journal of Computational Methods in Sciences and Engineering, 22 (1), 207–217.
https://doi.org/10.3233/JCM-215901 - Dong, W., Sun, H., Tan, J., Li, Z., Zhang, J., Zhao, Y. Y. (2021). Short-term regional wind power forecasting for small datasets with input data correction, hybrid neural network, and error analysis. Energy Reports, 7, 7675–7692.
https://doi.org/10.1016/j.egyr.2021.11.021 - Xia, T., Liu, C., Lei, M., Xia, S., Li, D., Ming, D. (2022). Measurement error estimation for distributed smart meters through a modified BP neural network. Frontiers in Energy Research, 10, 928681.
https://doi.org/10.3389/fenrg.2022.928681 - Su, C., Liu, Z., Hu, J., Kuang, Z., Wei, Z. (2018). Line loss calculation in power distribution network based on power measurement data and BP neural network. In 2018 International Conference on Power System Technology (POWERCON). IEEE, 4107–4112.
https://doi.org/10.1109/POWERCON.2018.8601813 - Tornyeviadzi, H. M., Seidu, R. (2023). Leakage detection in water distribution networks via 1D CNN deep autoencoder for multivariate SCADA data. Engineering Applications of Artificial Intelligence, 122, 106062.
https://doi.org/10.1016/j.engappai.2023.106062 - Lu, X., Lin, Y., Lin, P., He, X., Fang, G., Cheng, S., Chen, Z., Wu, L. (2023). Efficient fault diagnosis approach for solar photovoltaic array using a convolutional neural network in combination of generative adversarial network under small dataset. Solar Energy, 253, 360–374.
https://doi.org/10.1016/j.solener.2022.12.037 - Bi, J., Zhang, L., Yuan, H., Zhang, J. (2023). Multi-indicator water quality prediction with attention-assisted bidirectional LSTM and encoder-decoder. Information Sciences, 625, 65–80.
https://doi.org/10.1016/j.ins.2022.12.091 - Miao, P., Yokota, H., Zhang, Y. (2023). Deterioration prediction of existing concrete bridges using a LSTM recurrent neural network. Structure and Infrastructure Engineering, 19 (4), 475–489.
https://doi.org/10.1080/15732479.2021.1951778 - Zheng, Q., Wang, R., Tian, X., Yu, Z., Wang, H., Elhanashi, A., Saponara, S. (2023). A real-time transformer discharge pattern recognition method based on CNN-LSTM driven by few-shot learning. Electric Power Systems Research, 219, 109241.
https://doi.org/10.1016/j.epsr.2023.109241