Have a personal or library account? Click to login
Research on the Error Estimation Method for Electric Energy Meters of Electric Vehicle Charging Piles based on Deep Learning Cover

Research on the Error Estimation Method for Electric Energy Meters of Electric Vehicle Charging Piles based on Deep Learning

Open Access
|Apr 2025

References

  1. Hu, J., Vasilakos, A. V. (2016). Energy big data analytics and security: Challenges and opportunities. IEEE Transactions on Smart Grid, 7 (5), 2423–2436. https://doi.org/10.1109/TSG.2016.2563461
  2. Žilvinas, N., Kaškonas, P., Saunoris, M., Daunoras, V., Jurčević, M. (2021). A framework for remote in-service metrological surveillance of energy meters. Measurement, 168, 108438. https://doi.org/10.1016/j.measurement.2020.108438
  3. Alonso, A. M., Nogales, F. J., Ruiz, C. (2020). Hierarchical clustering for smart meter electricity loads based on quantile autocovariances. IEEE Transactions on Smart Grid, 11 (5), 4522–4530. https://doi.org/10.1109/TSG.2020.2991316
  4. Yao, D., Wen, M., Liang, X., Fu, Z., Zhang, K., Yang, B. (2019). Energy theft detection with energy privacy preservation in the smart grid. IEEE Internet of Things Journal, 6 (5), 7659–7669. https://doi.org/10.1109/JIOT.2019.2903312
  5. Borovina, D., Zajc, M., Mujcic, A., Tonello, A., Suljanovic, N. (2020). Error performance analysis and modeling of narrow-band PLC technology enabling smart metering systems. International Journal of Electrical Power & Energy Systems, 116, 105536. https://doi.org/10.1016/j.ijepes.2019.105536
  6. Chen, L., Huang, Y., Lu, T., Dang, S., Kong, Z. (2022). Metering equipment running error estimation model based on genetic optimized LM algorithm. Journal of Computational Methods in Sciences and Engineering, 22 (1), 197–205. https://doi.org/10.3233/JCM-215896
  7. Cen, W., Zhao, B., Feng, Z., Fu, Y. (2012). The research of smart electricity meter whole performance automatic detection technology. In 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE). IEEE, 431–434. https://doi.org/10.1109/CSAE.2012.6272808
  8. Kong, X., Zhang, X., Bai, L. (2022). A remote estimation method of smart meter errors based on neural network filter and generalized damping recursive least square. IEEE Transactions on Industrial Informatics, 18 (1), 219–230. https://doi.org/10.1109/TII.2021.3074420
  9. Liu, F., He, Q., Hu, S., Wang, L., Jia, Z. (2018). Estimation of smart meters errors using meter reading data. In 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). IEEE. https://doi.org/10.1109/CPEM.2018.8501256
  10. Liu, F., Liang, C., He, Q., Wang, L., Huang, C., Hu, S. (2020). An approach for online smart meter error estimation. In 2020 Conference on Precision Electromagnetic Measurements (CPEM). IEEE. https://doi.org/10.1109/CPEM49742.2020.9191736
  11. Xie, W., Zhang, L., Zhang, B., Zhang, W., Wang, P., Qiao, S. (2021). Reliability analysis of intelligent electric energy meter under fusion model illness analysis algorithm. Journal of Sensors, 2021, 2000879. https://doi.org/10.1155/2021/2000879
  12. Kong, X., Zhang, X., Lu, N., Ma, Y., Li, Y. (2021). Online smart meter measurement error estimation based on EKF and LMRLS method. IEEE Transactions on Smart Grid, 12 (5), 4269–4279. https://doi.org/10.1109/TSG.2021.3077693
  13. Liu, M, Liu, D, Sun, G., Zhao, Y., Wang, D., Liu, F., Fang, X., He, Q., Xu, D. (2020). Deep learning detection of inaccurate smart electricity meters: A case study. IEEE Industrial Electronics Magazine, 14 (4), 79–90. https://doi.org/10.1109/MIE.2020.3026197
  14. Duan, J., Zuo, H., Bai, Y., Duan, J., Chang, M., Chen, B. (2021). Short-term wind speed forecasting using recurrent neural networks with error correction. Energy, 217, 119397. https://doi.org/10.1016/j.energy.2020.119397
  15. Amarbayasgalan, T., Pham, V. H., Theera-Umpon, N., Ryu, K. H. (2020). Unsupervised anomaly detection approach for time-series in multi domains using deep reconstruction error. Symmetry, 12 (8), 1251. https://doi.org/10.3390/sym12081251
  16. Wang, Z., Gong, G., Wen, Y. (2016). Anomaly diagnosis analysis for running meter based on BP neural network. In Proceedings of the 2016 International Conference on Communications, Information Management and Network Security. Atlantis Press, 99–101. https://doi.org/10.2991/cimns-16.2016.23
  17. Chen, L., Huang, Y., Lu, T., Dang, S., Zhang, J., Zhao, W., Kong, Z. (2022). Remote error estimation of smart meter based on clustering and adaptive gradient descent method. Journal of Computational Methods in Sciences and Engineering, 22 (1), 207–217. https://doi.org/10.3233/JCM-215901
  18. Dong, W., Sun, H., Tan, J., Li, Z., Zhang, J., Zhao, Y. Y. (2021). Short-term regional wind power forecasting for small datasets with input data correction, hybrid neural network, and error analysis. Energy Reports, 7, 7675–7692. https://doi.org/10.1016/j.egyr.2021.11.021
  19. Xia, T., Liu, C., Lei, M., Xia, S., Li, D., Ming, D. (2022). Measurement error estimation for distributed smart meters through a modified BP neural network. Frontiers in Energy Research, 10, 928681. https://doi.org/10.3389/fenrg.2022.928681
  20. Su, C., Liu, Z., Hu, J., Kuang, Z., Wei, Z. (2018). Line loss calculation in power distribution network based on power measurement data and BP neural network. In 2018 International Conference on Power System Technology (POWERCON). IEEE, 4107–4112. https://doi.org/10.1109/POWERCON.2018.8601813
  21. Tornyeviadzi, H. M., Seidu, R. (2023). Leakage detection in water distribution networks via 1D CNN deep autoencoder for multivariate SCADA data. Engineering Applications of Artificial Intelligence, 122, 106062. https://doi.org/10.1016/j.engappai.2023.106062
  22. Lu, X., Lin, Y., Lin, P., He, X., Fang, G., Cheng, S., Chen, Z., Wu, L. (2023). Efficient fault diagnosis approach for solar photovoltaic array using a convolutional neural network in combination of generative adversarial network under small dataset. Solar Energy, 253, 360–374. https://doi.org/10.1016/j.solener.2022.12.037
  23. Bi, J., Zhang, L., Yuan, H., Zhang, J. (2023). Multi-indicator water quality prediction with attention-assisted bidirectional LSTM and encoder-decoder. Information Sciences, 625, 65–80. https://doi.org/10.1016/j.ins.2022.12.091
  24. Miao, P., Yokota, H., Zhang, Y. (2023). Deterioration prediction of existing concrete bridges using a LSTM recurrent neural network. Structure and Infrastructure Engineering, 19 (4), 475–489. https://doi.org/10.1080/15732479.2021.1951778
  25. Zheng, Q., Wang, R., Tian, X., Yu, Z., Wang, H., Elhanashi, A., Saponara, S. (2023). A real-time transformer discharge pattern recognition method based on CNN-LSTM driven by few-shot learning. Electric Power Systems Research, 219, 109241. https://doi.org/10.1016/j.epsr.2023.109241
Language: English
Page range: 40 - 47
Submitted on: May 10, 2024
|
Accepted on: Mar 3, 2025
|
Published on: Apr 15, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Juan Wang, Wei Liu, Yong Zhang, Zhi Liu, Xiaolei Zheng, Yuxin Wang, Jianshu Hao, Xuanding Dai, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.