References
- Achouch, M., Dimitrova, M., Ziane, K., Karganroudi, S. S., Dhouib, R., Ibrahim, H., Adda, M. (2022). On predictive maintenance in Industry 4.0: Overview, models, and challenges. Applied Sciences Review, 12 (16), 8081.
https://doi.org/10.3390/app12168081 - Lindh, T. (2003). On the condition monitoring of induction machines. Doctoral Dissertation, Lappeenranta University of Technology, Lappeenranta, Finland.
https://urn.fi/URN:ISBN:951-764-843-X - Tavner, P. J. (2008). Review of condition monitoring of rotating electrical machines. IET Electric Power Applications, 2 (4), 215–247.
https://doi.org/10.1049/iet-epa:20070280 - Sarma, N., Tuohy, P., Djurovic, S. (2023). Condition monitoring of rotating electrical machines. In Encyclopedia of Electrical and Electronic Power Engineering. Elsevier, 143–154.
https://doi.org/10.1016/b978-0-12-821204-2.00136-7 - Motor Reliability Working Group. (1985). Report of large motor reliability survey of industrial and commercial installations, Part I. IEEE Transactions on Industry Applications, IA-21 (4), 853–864.
https://doi.org/10.1109/TIA.1985.349532 - Motor Reliability Working Group. (1985). Report of large motor reliability survey of industrial and commercial installations, Part II. IEEE Transactions on Industry Applications, IA-21 (4), 865–872.
https://doi.org/10.1109/TIA.1985.349533 - Albrecht, P. F., Appiarius, J. C., McCoy, R. M., Owen, E. L., Sharma, D. K. (1986). Assessment of the reliability of motors in utility applications – updated. IEEE Transactions on Energy Conversion, EC-1 (1), 39–46.
https://doi.org/10.1109/TEC.1986.4765668 - Thorsen, O. V., Dalva, M. (1995). A survey of faults on induction motors in offshore oil industry, petrochemical industry, gas terminals, and oil refineries. IEEE Transactions on Industry Applications, 31 (5), 1186–1196.
https://doi.org/10.1109/28.464536 - Shin, K., Hammond, J. (2008). Fundamentals of Signal Processing for Sound and Vibration Engineers. Wiley, ISBN 978-0-470-51188-6.
- Trendafilova, I. (2010). An automated procedure for detection and identification of ball bearing damage using multivariate statistics and pattern recognition. Mechanical Systems and Signal Processing, 24 (6), 1858–1869.
https://doi.org/10.1016/j.ymssp.2010.02.005 - Marić, D., Duspara, M., Šolić, T., Samardžić, I. (2019). Application of SVM models for classification of welded joints. Technical Gazette, 26 (2), 533–538.
https://doi.org/10.17559/TV-20180305095253 - Rozing, G., Duspara, M., Dudic, B., Savkovic, B. (2023). Research on the effect of load and rotation speed on resistance to combined wear of stainless steels using ANOVA analysis. Materials, 16 (12), 4284.
https://doi.org/10.3390/ma16124284 - Pandian, A., Ali, A. (2010). A review of recent trends in machine diagnosis and prognosis algorithms. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE.
https://doi.org/10.1109/NABIC.2009.5393625 - Liu, R., Yang, B., Zio, E., Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47.
https://doi.org/10.1016/j.ymssp.2018.02.016 - Liu, X., Zhou, Q., Zhao, J., Shen, H., Xiong, X. (2019). Fault diagnosis of rotating machinery under noisy environment conditions based on a 1-D convolutional autoencoder and 1-D convolutional neural network. Sensors, 19 (4), 972.
https://doi.org/10.3390/s19040972 - Samanta, B., Al-Balushi, K. R. (2003). Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mechanical Systems and Signal Processing, 17 (2), 317–328.
https://doi.org/10.1006/mssp.2001.1462 - Kankar, P. K., Sharma, S. C., Harsha, S. P. (2011). Fault diagnosis of ball bearings using machine learning methods. Expert Systems with Applications, 38 (3), 1876–1886.
https://doi.org/10.1016/j.eswa.2010.07.119 - Jenkins, C. D. (2019). Bearing fault detection and wear estimation using machine learning. Technical Report LA-UR-19-27700.
https://doi.org/10.2172/1557163 - Sawaqed, L. S., Alrayes, A. M. (2020). Bearing fault diagnostic using machine learning algorithms. Progress in Artificial Intelligence, 9 (4), 341–350.
https://doi.org/10.1007/s13748-020-00217-z - Zhang, S., Zhang, S., Wang, B., Habetler, T. G. (2020). Deep learning algorithms for bearing fault diagnostics—A comprehensive review. IEEE Access, 8, 29857–29881.
https://doi.org/10.1109/ACCESS.2020.2972859 - Teotrakool, K., Devaney, M. J., Eren, L. (2008). Bearing fault detection in adjustable speed drives via a support vector machine with feature selection using a genetic algorithm. In 2008 IEEE Instrumentation and Measurement Technology Conference. IEEE, 1129–1133.
https://doi.org/10.1109/IMTC.2008.4547208 - Konar, P., Chattopadhyay, P. (2011). Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs). Applied Soft Computing, 11 (6), 4203–4211.
https://doi.org/10.1016/j.asoc.2011.03.014 - Benkedjouh, T., Medjaher, K., Zerhouni, N., Rechak, S. (2012). Fault prognostic of bearings by using support vector data description. In 2012 IEEE Conference on Prognostics and Health Management. IEEE, 1–7.
https://doi.org/10.1109/ICPHM.2012.6299511 - Kang, M., Kim, J., Kim, J. M., Tan, A. C., Kim, E. Y., Choi, B. K. (2015). Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysis. IEEE Transactions on Power Electronics, 30 (5), 2786–2797.
https://doi.org/10.1109/TPEL.2014.2358494 - Song, W., Xiang, J. (2017). A method using numerical simulation and support vector machine to detect faults in bearings. In 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). IEEE, 603–607.
https://doi.org/10.1109/SDPC.2017.118 - Pandarakone, S. E., Mizuno, Y., Nakamura, H. (2019). Evaluating the progression and orientation of scratches on outer-raceway bearing using a pattern recognition method. IEEE Transactions on Industrial Electronics, 66 (2), 1307–1314.
https://doi.org/10.1109/TIE.2018.2833025 - King, R. D., Feng, C., Sutherland, A. (1995). StatLog: Comparison of classification algorithms on large real-world problems. Applied Artificial Intelligence, 9 (3), 289–333.
https://doi.org/10.1080/08839519508945477 - Kohavi, R., John, G. H. (1995). Automatic parameter selection by minimizing estimated error. In Machine Learning Proceedings 1995. Morgan Kaufmann Publishers, 304–312.
https://doi.org/10.1016/B978-1-55860-377-6.50045-1 - Michie, D., Spiegelhalter, D. J., Taylor, C. C. (1994). Machine Learning, Neural and Statistical Classification. Prentice Hall, ISBN 978-0131063600.
- Ripley, B. D. (1993). Statistical aspects of neural networks. In Networks and Chaos - Statistical and Probabilistic Aspects. Champman & Hall, 40–123. ISBN 0-412-46530-2.
- Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) (2019). Automated Machine Learning: Methods, Systems, Challenges. Springer, ISBN 978-3-030-05318-5.
https://doi.org/10.1007/978-3-030-05318-5 - Shahriari, B., Swersky, K., Wang, Z., Adams, R., de Freitas, N. (2016). Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104 (1), 148–175.
https://doi.org/10.1109/JPROC.2015.2494218 - Brochu, E., Cora, V. M., De Freitas, N. (2010). A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv, 1012.2599.
https://doi.org/10.48550/arXiv.1012.2599