Have a personal or library account? Click to login
Implementation and Evaluation of Machine Learning Algorithms in Ball Bearing Fault Detection Cover

Implementation and Evaluation of Machine Learning Algorithms in Ball Bearing Fault Detection

Open Access
|Apr 2025

References

  1. Achouch, M., Dimitrova, M., Ziane, K., Karganroudi, S. S., Dhouib, R., Ibrahim, H., Adda, M. (2022). On predictive maintenance in Industry 4.0: Overview, models, and challenges. Applied Sciences Review, 12 (16), 8081. https://doi.org/10.3390/app12168081
  2. Lindh, T. (2003). On the condition monitoring of induction machines. Doctoral Dissertation, Lappeenranta University of Technology, Lappeenranta, Finland. https://urn.fi/URN:ISBN:951-764-843-X
  3. Tavner, P. J. (2008). Review of condition monitoring of rotating electrical machines. IET Electric Power Applications, 2 (4), 215–247. https://doi.org/10.1049/iet-epa:20070280
  4. Sarma, N., Tuohy, P., Djurovic, S. (2023). Condition monitoring of rotating electrical machines. In Encyclopedia of Electrical and Electronic Power Engineering. Elsevier, 143–154. https://doi.org/10.1016/b978-0-12-821204-2.00136-7
  5. Motor Reliability Working Group. (1985). Report of large motor reliability survey of industrial and commercial installations, Part I. IEEE Transactions on Industry Applications, IA-21 (4), 853–864. https://doi.org/10.1109/TIA.1985.349532
  6. Motor Reliability Working Group. (1985). Report of large motor reliability survey of industrial and commercial installations, Part II. IEEE Transactions on Industry Applications, IA-21 (4), 865–872. https://doi.org/10.1109/TIA.1985.349533
  7. Albrecht, P. F., Appiarius, J. C., McCoy, R. M., Owen, E. L., Sharma, D. K. (1986). Assessment of the reliability of motors in utility applications – updated. IEEE Transactions on Energy Conversion, EC-1 (1), 39–46. https://doi.org/10.1109/TEC.1986.4765668
  8. Thorsen, O. V., Dalva, M. (1995). A survey of faults on induction motors in offshore oil industry, petrochemical industry, gas terminals, and oil refineries. IEEE Transactions on Industry Applications, 31 (5), 1186–1196. https://doi.org/10.1109/28.464536
  9. Shin, K., Hammond, J. (2008). Fundamentals of Signal Processing for Sound and Vibration Engineers. Wiley, ISBN 978-0-470-51188-6.
  10. Trendafilova, I. (2010). An automated procedure for detection and identification of ball bearing damage using multivariate statistics and pattern recognition. Mechanical Systems and Signal Processing, 24 (6), 1858–1869. https://doi.org/10.1016/j.ymssp.2010.02.005
  11. Marić, D., Duspara, M., Šolić, T., Samardžić, I. (2019). Application of SVM models for classification of welded joints. Technical Gazette, 26 (2), 533–538. https://doi.org/10.17559/TV-20180305095253
  12. Rozing, G., Duspara, M., Dudic, B., Savkovic, B. (2023). Research on the effect of load and rotation speed on resistance to combined wear of stainless steels using ANOVA analysis. Materials, 16 (12), 4284. https://doi.org/10.3390/ma16124284
  13. Pandian, A., Ali, A. (2010). A review of recent trends in machine diagnosis and prognosis algorithms. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE. https://doi.org/10.1109/NABIC.2009.5393625
  14. Liu, R., Yang, B., Zio, E., Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47. https://doi.org/10.1016/j.ymssp.2018.02.016
  15. Liu, X., Zhou, Q., Zhao, J., Shen, H., Xiong, X. (2019). Fault diagnosis of rotating machinery under noisy environment conditions based on a 1-D convolutional autoencoder and 1-D convolutional neural network. Sensors, 19 (4), 972. https://doi.org/10.3390/s19040972
  16. Samanta, B., Al-Balushi, K. R. (2003). Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mechanical Systems and Signal Processing, 17 (2), 317–328. https://doi.org/10.1006/mssp.2001.1462
  17. Kankar, P. K., Sharma, S. C., Harsha, S. P. (2011). Fault diagnosis of ball bearings using machine learning methods. Expert Systems with Applications, 38 (3), 1876–1886. https://doi.org/10.1016/j.eswa.2010.07.119
  18. Jenkins, C. D. (2019). Bearing fault detection and wear estimation using machine learning. Technical Report LA-UR-19-27700. https://doi.org/10.2172/1557163
  19. Sawaqed, L. S., Alrayes, A. M. (2020). Bearing fault diagnostic using machine learning algorithms. Progress in Artificial Intelligence, 9 (4), 341–350. https://doi.org/10.1007/s13748-020-00217-z
  20. Zhang, S., Zhang, S., Wang, B., Habetler, T. G. (2020). Deep learning algorithms for bearing fault diagnostics—A comprehensive review. IEEE Access, 8, 29857–29881. https://doi.org/10.1109/ACCESS.2020.2972859
  21. Teotrakool, K., Devaney, M. J., Eren, L. (2008). Bearing fault detection in adjustable speed drives via a support vector machine with feature selection using a genetic algorithm. In 2008 IEEE Instrumentation and Measurement Technology Conference. IEEE, 1129–1133. https://doi.org/10.1109/IMTC.2008.4547208
  22. Konar, P., Chattopadhyay, P. (2011). Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs). Applied Soft Computing, 11 (6), 4203–4211. https://doi.org/10.1016/j.asoc.2011.03.014
  23. Benkedjouh, T., Medjaher, K., Zerhouni, N., Rechak, S. (2012). Fault prognostic of bearings by using support vector data description. In 2012 IEEE Conference on Prognostics and Health Management. IEEE, 1–7. https://doi.org/10.1109/ICPHM.2012.6299511
  24. Kang, M., Kim, J., Kim, J. M., Tan, A. C., Kim, E. Y., Choi, B. K. (2015). Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysis. IEEE Transactions on Power Electronics, 30 (5), 2786–2797. https://doi.org/10.1109/TPEL.2014.2358494
  25. Song, W., Xiang, J. (2017). A method using numerical simulation and support vector machine to detect faults in bearings. In 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). IEEE, 603–607. https://doi.org/10.1109/SDPC.2017.118
  26. Pandarakone, S. E., Mizuno, Y., Nakamura, H. (2019). Evaluating the progression and orientation of scratches on outer-raceway bearing using a pattern recognition method. IEEE Transactions on Industrial Electronics, 66 (2), 1307–1314. https://doi.org/10.1109/TIE.2018.2833025
  27. King, R. D., Feng, C., Sutherland, A. (1995). StatLog: Comparison of classification algorithms on large real-world problems. Applied Artificial Intelligence, 9 (3), 289–333. https://doi.org/10.1080/08839519508945477
  28. Kohavi, R., John, G. H. (1995). Automatic parameter selection by minimizing estimated error. In Machine Learning Proceedings 1995. Morgan Kaufmann Publishers, 304–312. https://doi.org/10.1016/B978-1-55860-377-6.50045-1
  29. Michie, D., Spiegelhalter, D. J., Taylor, C. C. (1994). Machine Learning, Neural and Statistical Classification. Prentice Hall, ISBN 978-0131063600.
  30. Ripley, B. D. (1993). Statistical aspects of neural networks. In Networks and Chaos - Statistical and Probabilistic Aspects. Champman & Hall, 40–123. ISBN 0-412-46530-2.
  31. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) (2019). Automated Machine Learning: Methods, Systems, Challenges. Springer, ISBN 978-3-030-05318-5. https://doi.org/10.1007/978-3-030-05318-5
  32. Shahriari, B., Swersky, K., Wang, Z., Adams, R., de Freitas, N. (2016). Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104 (1), 148–175. https://doi.org/10.1109/JPROC.2015.2494218
  33. Brochu, E., Cora, V. M., De Freitas, N. (2010). A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv, 1012.2599. https://doi.org/10.48550/arXiv.1012.2599
Language: English
Page range: 22 - 29
Submitted on: Apr 12, 2024
Accepted on: Mar 7, 2025
Published on: Apr 12, 2025
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Pavle Stepanić, Nedeljko Dučić, Jelena Vidaković, Jelena Baralić, Marko Popović, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.