References
- Alhawari, M., Mohammad, B., Saleh, H., Ismail, M. (2018). Energy harvesting for self-powered wearable devices. Springer. https://doi.org/10.1007/978-3-319-62578-2.
- Gattiker, A., Nigh, P., Aitken, R. (2011). An overview of integrated circuit testing methods. In Microelectronics Failure Analysis: Desk Reference, 7th Edition. ASM International, 634–642. https://doi.org/10.31399/asm.tb.mfadr7.t91110634.
- Ooi, M. P. L., Kassim, Z. A., & Demidenko, S. N. (2007). Shortening burn-in test: Application of HVST and Weibull statistical analysis. IEEE Transactions on instrumentation and measurement, 56(3), 990-999. https://doi.org/10.1109/TIM.2007.894165.
- Grout, I. A. (2005). Integrated circuit test engineering: modern techniques. Springer. https://doi.org/10.1007/1-84628-173-3.
- Mancini, R. (2003). Op Amps for Everyone: Design Reference. Newnes. https://doi.org/10.1016/B978-0-7506-7701-1.X5000-7.
- Baker, R. J. (2019). CMOS: Circuit Design, Layout, and Simulation, 4th Edition. Wiley-IEEE Press. ISBN 978-1-119-48151-5.
- Arbet, D., Nagy, G., Kovač, M., & Stopjakova, V. (2015). Fully differential difference amplifier for lownoise applications. In 2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems. IEEE, 57–62. https://doi.org/10.1109/DDECS.2015.38.
- Huang, S.-C., Ismail, M. (1994). Design of a CMOS differential difference amplifier and its applications in A/D and D/A converters. In Proceedings of APCCAS’94 - 1994 Asia Pacific Conference on Circuits and Systems. IEEE, 478-483. https://doi.org/10.1109/APCCAS.1994.514597.
- Arbet, D., Nagy, G., Kovač, M., Stopjakova, V. (2016). Fully differential difference amplifier for low-noise and low-distortion applications. Journal of Circuits, Systems and Computers, 25(03), 1640019. https://doi.org/10.1142/S0218126616400193.
- Potočny, M., Šovčik, M., Arbet, D., Stopjakova, V., Kovač, M. (2018). New input offset voltage measurement setup for ultra low-voltage fully differential amplifier. In 2018 International Conference on Applied Electronics (AE). IEEE. https://doi.org/10.23919/AE.2018.8501424.
- Sackinger, E., Guggenbuhl, W. (1987). A versatile building block: The CMOS differential difference amplifier. IEEE Journal of Solid-State Circuits, 22(2), 287-294. https://doi.org/10.1109/JSSC.1987.1052715.
- Mohamed, A. R., Ibrahim, M. F., Farag, F. (2013). Input offset cancellation trimming technique for operational amplifiers. In 2013 Saudi International Electronics, Communications and Photonics Conference. IEEE. https://doi.org/10.1109/SIECPC.2013.6550758.
- Analog Devices. (2009). Op amp input offset voltage. MT-037 Tutorial. https://www.analog.com/media/en/training-seminars/tutorials/MT-037.pdf.
- Zhou, J., Liu, J. (2005). On the measurement of common-mode rejection ratio. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(1), 49-53. https://doi.org/10.1109/TCSII.2004.838332.
- Terrell, D. (1996). Op Amps: Design, Application, and Troubleshooting. Newnes. ISBN 0750697024.
- Analog Devices. (2009). Op amp commonmode rejection ratio (CMRR). MT-042 Tutorial. https://www.analog.com/media/en/training-seminars/tutorials/MT-042.pdf.
- Jung, W. (2005). Op Amp Applications Handbook. Newnes. https://doi.org/10.1016/B978-0-7506-7844-5.X5109-1.
- Zumbahlen, H. with the engineering staff of Analog Devices. (2008). Linear Circuit Ddesign Handbook. Newnes. https://doi.org/10.1016/B978-0-7506-8703-4.X0001-6.
- Hudec, A., Ravasz, R., Arbet, D., Stopjakova, V. (2021). A control system for automated evaluation and tuning of ASIC parameters. In 2021 International Conference on Applied Electronics (AE). IEEE. https://doi.org/10.23919/AE51540.2021.9542883.
- Maxim Integrated Products, Inc. (2017). MAX4200- MAX4205 Ultra-High-Speed, Low-Noise, Low- Power, SOT23 Open-Loop Buffers. Data Sheet. https://www.analog.com/media/en/technical-documentation/data-sheets/max4200-max4205.pdf
- Maxim Integrated Products, Inc. (2017). MAX44250/MAX44251/MAX44252, 20V, Ultra- Precision, Low-Noise Op Amps. Data Sheet. https://www.analog.com/media/en/technical-documentation/data-sheets/max44250-max44252.pdf
- Texas Instruments, (2023). THS4505, Wideband, Low-Distortion, Fully Differential Amplifiers. Data Sheet. https://www.ti.com/lit/ds/symlink/ths4505.pdf
- Texas Instruments, (2023). OPA3695, Triple, Ultra- Wideband, Current-Feedback Operational Amplifier With Disable. Data Sheet. https://www.ti.com/lit/ds/symlink/opa3695.pdf
- Kulej, T., Khateb, F. (2015). 0.4-V bulk-driven differential-difference amplifier. Microelectronics Journal, 46(5), 362-369. https://doi.org/10.1016/j.mejo.2015.02.009
- Ong, G. T., Chan, P. K. (2010). A micropower gatebulk driven differential difference amplifier with folded telescopic cascode topology for sensor applications. In 2010 53rd IEEE International Midwest Symposium on Circuits and Systems. IEEE, 193-196. https://doi.org/10.1109/MWSCAS.2010.5548698