Have a personal or library account? Click to login
Measurement Approach to Evaluation of Ultra-Low-Voltage Amplifier ASICs Cover

Measurement Approach to Evaluation of Ultra-Low-Voltage Amplifier ASICs

Open Access
|Mar 2024

References

  1. Alhawari, M., Mohammad, B., Saleh, H., Ismail, M. (2018). Energy harvesting for self-powered wearable devices. Springer. https://doi.org/10.1007/978-3-319-62578-2.
  2. Gattiker, A., Nigh, P., Aitken, R. (2011). An overview of integrated circuit testing methods. In Microelectronics Failure Analysis: Desk Reference, 7th Edition. ASM International, 634–642. https://doi.org/10.31399/asm.tb.mfadr7.t91110634.
  3. Ooi, M. P. L., Kassim, Z. A., & Demidenko, S. N. (2007). Shortening burn-in test: Application of HVST and Weibull statistical analysis. IEEE Transactions on instrumentation and measurement, 56(3), 990-999. https://doi.org/10.1109/TIM.2007.894165.
  4. Grout, I. A. (2005). Integrated circuit test engineering: modern techniques. Springer. https://doi.org/10.1007/1-84628-173-3.
  5. Mancini, R. (2003). Op Amps for Everyone: Design Reference. Newnes. https://doi.org/10.1016/B978-0-7506-7701-1.X5000-7.
  6. Baker, R. J. (2019). CMOS: Circuit Design, Layout, and Simulation, 4th Edition. Wiley-IEEE Press. ISBN 978-1-119-48151-5.
  7. Arbet, D., Nagy, G., Kovač, M., & Stopjakova, V. (2015). Fully differential difference amplifier for lownoise applications. In 2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems. IEEE, 57–62. https://doi.org/10.1109/DDECS.2015.38.
  8. Huang, S.-C., Ismail, M. (1994). Design of a CMOS differential difference amplifier and its applications in A/D and D/A converters. In Proceedings of APCCAS’94 - 1994 Asia Pacific Conference on Circuits and Systems. IEEE, 478-483. https://doi.org/10.1109/APCCAS.1994.514597.
  9. Arbet, D., Nagy, G., Kovač, M., Stopjakova, V. (2016). Fully differential difference amplifier for low-noise and low-distortion applications. Journal of Circuits, Systems and Computers, 25(03), 1640019. https://doi.org/10.1142/S0218126616400193.
  10. Potočny, M., Šovčik, M., Arbet, D., Stopjakova, V., Kovač, M. (2018). New input offset voltage measurement setup for ultra low-voltage fully differential amplifier. In 2018 International Conference on Applied Electronics (AE). IEEE. https://doi.org/10.23919/AE.2018.8501424.
  11. Sackinger, E., Guggenbuhl, W. (1987). A versatile building block: The CMOS differential difference amplifier. IEEE Journal of Solid-State Circuits, 22(2), 287-294. https://doi.org/10.1109/JSSC.1987.1052715.
  12. Mohamed, A. R., Ibrahim, M. F., Farag, F. (2013). Input offset cancellation trimming technique for operational amplifiers. In 2013 Saudi International Electronics, Communications and Photonics Conference. IEEE. https://doi.org/10.1109/SIECPC.2013.6550758.
  13. Analog Devices. (2009). Op amp input offset voltage. MT-037 Tutorial. https://www.analog.com/media/en/training-seminars/tutorials/MT-037.pdf.
  14. Zhou, J., Liu, J. (2005). On the measurement of common-mode rejection ratio. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(1), 49-53. https://doi.org/10.1109/TCSII.2004.838332.
  15. Terrell, D. (1996). Op Amps: Design, Application, and Troubleshooting. Newnes. ISBN 0750697024.
  16. Analog Devices. (2009). Op amp commonmode rejection ratio (CMRR). MT-042 Tutorial. https://www.analog.com/media/en/training-seminars/tutorials/MT-042.pdf.
  17. Jung, W. (2005). Op Amp Applications Handbook. Newnes. https://doi.org/10.1016/B978-0-7506-7844-5.X5109-1.
  18. Zumbahlen, H. with the engineering staff of Analog Devices. (2008). Linear Circuit Ddesign Handbook. Newnes. https://doi.org/10.1016/B978-0-7506-8703-4.X0001-6.
  19. Hudec, A., Ravasz, R., Arbet, D., Stopjakova, V. (2021). A control system for automated evaluation and tuning of ASIC parameters. In 2021 International Conference on Applied Electronics (AE). IEEE. https://doi.org/10.23919/AE51540.2021.9542883.
  20. Maxim Integrated Products, Inc. (2017). MAX4200- MAX4205 Ultra-High-Speed, Low-Noise, Low- Power, SOT23 Open-Loop Buffers. Data Sheet. https://www.analog.com/media/en/technical-documentation/data-sheets/max4200-max4205.pdf
  21. Maxim Integrated Products, Inc. (2017). MAX44250/MAX44251/MAX44252, 20V, Ultra- Precision, Low-Noise Op Amps. Data Sheet. https://www.analog.com/media/en/technical-documentation/data-sheets/max44250-max44252.pdf
  22. Texas Instruments, (2023). THS4505, Wideband, Low-Distortion, Fully Differential Amplifiers. Data Sheet. https://www.ti.com/lit/ds/symlink/ths4505.pdf
  23. Texas Instruments, (2023). OPA3695, Triple, Ultra- Wideband, Current-Feedback Operational Amplifier With Disable. Data Sheet. https://www.ti.com/lit/ds/symlink/opa3695.pdf
  24. Kulej, T., Khateb, F. (2015). 0.4-V bulk-driven differential-difference amplifier. Microelectronics Journal, 46(5), 362-369. https://doi.org/10.1016/j.mejo.2015.02.009
  25. Ong, G. T., Chan, P. K. (2010). A micropower gatebulk driven differential difference amplifier with folded telescopic cascode topology for sensor applications. In 2010 53rd IEEE International Midwest Symposium on Circuits and Systems. IEEE, 193-196. https://doi.org/10.1109/MWSCAS.2010.5548698
Language: English
Page range: 9 - 16
Submitted on: Jul 2, 2023
|
Accepted on: Oct 25, 2023
|
Published on: Mar 7, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2024 Richard Ravasz, Miroslav Potočný, Daniel Arbet, Martin Kováč, David Maljar, Lukáš Nagy, Viera Stopjaková, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.