Have a personal or library account? Click to login
3D Printed Pressure Sensor Based on Surface Acoustic Wave Resonator Cover

3D Printed Pressure Sensor Based on Surface Acoustic Wave Resonator

Open Access
|Jun 2021

References

  1. [1] Faller, L.M., Granig, W., Krivec, M., Abram, A., Zangl, H. (2018). Rapid prototyping of force/pressure sensors using 3D- and inkjet-printing. Journal of Micromechanics and Microengineering, 28, 104002.10.1088/1361-6439/aaadf4
  2. [2] Davidovikj, D., Scheepers, P.H., van der Zant, H.S.J., Steeneken, P.G. (2017). Static capacitive pressure sensing using a single graphene drum. ACS Applied Materials & Interfaces, 9 (49), 43205-43210.10.1021/acsami.7b1748729164848
  3. [3] San, H., Song, Z., Wang, X., Zhao, Y. (2012). Piezoresistive pressure sensors for harsh environments. Optics and Precision Engineering, 20 (3), 550-555.
  4. [4] Gajula, D.R., Jahangir, I., Koley, G. (2018). High temperature AlGaN/GaN membrane based pressure sensors. Micromachines, 9 (5), 207.10.3390/mi9050207618771230424140
  5. [5] Shtyrkov, O.V., Yushkov, V.A. (2016). A dual absolute pressure measuring transducer. Instruments and Experimental Techniques, 59, 139-141.10.1134/S0020441216010140
  6. [6] Murawski, K. (2015). New vision sensor to measure gas pressure. Measurement Science Review, 15 (3), 132-138.10.1515/msr-2015-0020
  7. [7] Hu, B., Li, Z., Wan, Y., Li, M., San, H. (2021). Gas pressure measurement using micro-corona-discharging effect in surface acoustic wave resonators. Results in Physics, 25, 104221.10.1016/j.rinp.2021.104221
  8. [8] Nicolay, P., Elmazria, O., Sarry, F., Bouvot, L., Marche, N., Kambara, H. (2008). Innovative surface acoustic wave sensor for accurate measurement of subatmospheric pressure. Applied Physics Letters, 92, 141909.10.1063/1.2908038
  9. [9] Oh, H., Lee, K., Eun, K., Choa, S., Yang, S. (2012). Development of a high-sensitivity strain measurement system based on a SH SAW sensor. Journal of Micromechanics and Microengeering, 22, 025002.10.1088/0960-1317/22/2/025002
  10. [10] Dai, X., Fang, L., Zhang, C., Sun, H. (2020). An impedance-loaded orthogonal frequency-coded SAW sensor for passive wireless sensor networks. Sensors, 20 (7), 1876.10.3390/s20071876718107432231025
  11. [11] Royer, D., Dieulesaint, E. (2000). Elastic Waves in Solids II: Generation, Acousto-optic Interaction, Applications. Spinger, 336-342. ISBN 978-3540659310.
  12. [12] Hu, B., Zhang, S., Zhang, H., Lv, W., Zhang, C., Lv, X., San, H. (2017). Fabrications of L-Band LiNbO3- based SAW resonators for aerospace applications. Micromachines, 10 (6), 349.
  13. [13] Zhou, P., Chen, C., Wang, X., Hu, B., San, H. (2018). 2-Dimentional photoconductive MoS2 nanosheets using in surface acoustic wave resonators for ultraviolet light sensing. Sensors and Actuators A: Physical, 271 (1), 389-397.10.1016/j.sna.2017.12.007
  14. [14] Xie, L., Wang, T., Xing, J., Zhu, X. (2018). An embedded surface acoustic wave pressure sensor for monitoring civil engineering structures. IEEE Sensors Journal, 18 (13), 5232-5237.10.1109/JSEN.2018.2833155
  15. [15] Dixon, B., Kalinin, V., Beckley, J., Lohr, R. (2006). A second generation in-car tire pressure monitoring system based on wireless passive SAW sensors. In IEEE International Frequency Control Symposium. IEEE.10.1109/FREQ.2006.275414
  16. [16] Tanski, W.J. (1978). A configuration and circuit analysis for one-port SAW resonators. Journal of Applied Physics, 49 (4), 2559.10.1063/1.325064
  17. [17] Jasek, K., Pasternak, M. (2015). The influence of external pressure on resonant frequency of SAW resonator. Acta Physica Polonica A, 127 (6), 1601-1605.10.12693/APhysPolA.127.1601
  18. [18] Hara, B., Mitsui, M., Sano, K., Nagasawa, S., Kuwano, H. (2012). Experimental study of highly sensitive sensor using a surface acoustic wave resonator for wireless strain detection. Japanese Journal of Applied Physics, 51, 07GC23.10.7567/JJAP.51.07GC23
  19. [19] Hofer, M., Finger, N., Kovacs, G., Schoberl, J., Langer, U., Lerch, R. (2002). Finite element simulation of bulk- and surface acoustic wave (SAW) interaction in SAW devices. In IEEE Symposium (IUS) Ultrasonics. IEEE, 53-56.10.1109/ULTSYM.2002.1193351
  20. [20] Kannan, T. (2006). Finite element analysis of surface acoustic wave resonators. M.S. Thesis, Department of Electrical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
  21. [21] Hashimoto, K.-Y. (2000). Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation. Springer, ISBN 978-3-540-67232-6.
  22. [22] Haydl, W.H., Hiesinger, P., Smith, R.S., Dischler, B., Heber, K. (1976). Design of quartz and lithium niobate SAW resonators using aluminum metallization. In 30th Annual Symposium on Frequency Control. IEEE.10.1109/FREQ.1976.201337
  23. [23] Hoummady, M., Hauden, D. (1994). Acoustic wave thermal sensitivity: Temperature sensors and temperature compensation in microsensors. Sensors and Actuators A: Physical, 44 (3), 177-182.10.1016/0924-4247(94)00802-7
  24. [24] Pandian, A., Belavek, C. (2016). A review of recent trends and challenges in 3D printing. In Proceedings of the 2016 ASEE North Central Section Conference. American Society for Engineering Education.
Language: English
Page range: 76 - 81
Submitted on: Mar 30, 2021
|
Accepted on: May 31, 2021
|
Published on: Jun 24, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2021 Baofa Hu, Zhiwei Li, Yuanjie Wan, Peng Zhou, Chunquan Zhang, Haisheng San, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.