Have a personal or library account? Click to login
Dielectric Resonators for the Measurements of the Surface Impedance of Superconducting Films Cover

Dielectric Resonators for the Measurements of the Surface Impedance of Superconducting Films

By:
Open Access
|Jun 2014

References

  1. [1] Oates, D. E. (2012). Microwave measurements of fundamental properties of superconductors. In 100 Years of Superconductivity. CRC Press, 459-471.
  2. [2] Hein, M. (2010). High-Temperature Superconductor Thin Films at Microwave Frequencies, Springer.
  3. [3] Weinstock, H., Nisenoff, M. (Eds.) (2001). Microwave Superconductivity. Kluwer Academic Publishers.10.1007/978-94-010-0450-3
  4. [4] Collin, R. E. (1992). Foundation for Microwave Engineering, 2nd Edition. McGraw-Hill.
  5. [5] Silva, E., Lanucara, M., Marcon, R. The effective surface resistance of superconductor/dielectric/metal structures. (1996). Superconductor Science and Technology, 9 (11), 934-941.10.1088/0953-2048/9/11/003
  6. [6] Maeda, A., Kitano, H., Inoue, R. (2005). Microwave conductivities of high-Tc oxide superconductors and related materials. J. Phys.: Condens. Matter, 17 (4), R143.
  7. [7] Booth, J. C., Wu, D. H., Anlage, S. M. (1994). A broadband method for the measurement of the surface impedance of thin films at microwave frequencies. Review of Scientific Instruments, 65, 2082.10.1063/1.1144816
  8. [8] Tosoratti, N., Fastampa, R., Giura, M., Lenzi, V., Sarti, S., Silva, E. (2000). Two techniques for broadband measurement of the surface impedance of high critical temperature superconducting thin films. International Journal of Modern Physics B, 14, 2926.10.1142/S0217979200003113
  9. [9] Silva, E., Pompeo, N., Sarti, S. (2011). Wideband microwave measurements in Nb/Pd84Ni16/Nb structures and comparison with thin Nb films. Superconductor Science and Technology, 24, 024018.10.1088/0953-2048/24/2/024018
  10. [10] Biondi,M. A., Garfunkel,M. P. (1959).Millimeter wave absorption in superconducting aluminum. I. Temperature dependence of the energy gap. Physical Review, 116, 853.
  11. [11] Turner, P. J., Broun, D. M., Kamal, S., Hayden, M. E., Bobowski, J. S., Harris, R., Morga, D. C., Preston, J. S., Bonn, D. A., Hardy,W. N. (2004). Bolometric technique for high-resolution broadband microwave spectroscopy of ultra-low-loss samples. Review of Scientific Instruments, 75, 124.10.1063/1.1633001
  12. [12] Nichols, C. S., Shiren, N. S., Laibowitz, R. B., Kazyaka, T. G. (1988). Microwave transmission through films of YBa2Cu3O7−d . Physical Review B, 38, 11970.10.1103/PhysRevB.38.119709946117
  13. [13] Golosovsky, M., Davidov, D., Rettori, C., Stern, A. (1989). Magnetic field modulation effects on the microwave transmission through superconducting thin films of Y-Ba-Cu-O. Physical Review B, 40, 9299.10.1103/PhysRevB.40.9299
  14. [14] Sridhar, S., Kennedy, W. L. (1988). Novel technique to measure the microwave response of high Tc superconductors between 4.2 and 200 K. Review of Scientific Instruments, 59 (4), 531-536.10.1063/1.1139881
  15. [15] Silva, E., Lezzerini, A., Lanucara, M., Sarti, S., Marcon, R. (1998). A cavity system for the measurement of the surface resistance at 48 GHz in high-Tc superconductors. Measurement Science and Technology, 9, 275.10.1088/0957-0233/9/2/016
  16. [16] Misra, M., Kataria, N. D., Pinto, R., Tonouchi, M., Srivastava, G. P. (2001). Sensitivity of Rs-measurement of HTS thin films by three prime resonant techniques: Cavity resonator, dielectric resonator, and microstrip resonator. IEEE Transactions on Applied Superconductivity, 11 (4), 4128-4135.10.1109/77.979855
  17. [17] Krupka, J., Mazierska, J. (2000). Single-crystal dielectric resonators for low-temperature electronics applications. IEEE Transactions on Microwave Theory and Techniques, 48 (7), 1270-1274.
  18. [18] Kim, J., Kim, M. S., Lee, K., Lee, J., Cha, D., Friedman, B. (2003). Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution. Measurement Science and Technology, 14 (1), 7-12.10.1088/0957-0233/14/1/302
  19. [19] Pompeo, N., Marcon, R., Silva, E. (2007). Dielectric resonators for the measurement of superconductor thin films surface impedance in magnetic fields at high microwave frequencies. Journal of Superconductivity and Novel Magnetism, 20 (1), 71-82.10.1007/s10948-006-0192-5
  20. [20] Krupka, J., Derzakowski, K., Tobar, M., Hartnett, J., Geyer, R. G. (1999). Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Measurement Science and Technology, 10, 387-392.10.1088/0957-0233/10/5/308
  21. [21] Cherpak, N., Barannik, A., Filipov, Yu., Prokopenko, Yu., Vitusevich, S. (2003). Accurate microwave technique of surface resistance measurement of large-area HTS films using sapphire quasi-optical resonator. IEEE Transactions on Applied Superconductivity, 13 (2), 3570-3573.10.1109/TASC.2003.812400
  22. [22] Barannik, A.A., Bunyaev, S.A., Cherpak, N.T. (2008). On the low-temperature microwave response of a Y2Cu3O7−d epitaxial film determined by a new measurement technique. Low Temperature Physics, 34 (12), 977.10.1063/1.3029749
  23. [23] Barannik, A., Cherpak, N. T., Tanatar, M. A., Vitusevich, S., Skresanov, V., Canfield, P. C., Prozorov, R. (2013). Millimeter-wave surface impedance of optimally-doped Ba(Fe1−xCox)2As2 single crystals. Physical Review B, 87, 01450610.1103/PhysRevB.87.014506
  24. [24] Klein, O., Donovan, S., Dressel, M., Grüner, G. (1993). Microwave cavity perturbation technique: Part I: Principles. International Journal of Infrared and Millimeter Waves, 14 (12), 2423-2457.10.1007/BF02086216
  25. [25] Donovan, S., Klein, O., Dressel, M., Holczer, K., Grüner, G. (1993). Microwave cavity perturbation tech- nique: Part II: Experimental scheme. International Journal of Infrared and Millimeter Waves, 14 (12), 2459-2487.10.1007/BF02086217
  26. [26] Kobayashi, Y., Imai, T., Kayano, H. (1991). Microwave measurement of temperature and current dependences of surface impedance for high-Tc superconductors. IEEE Transactions on Microwave Theory and Techniques, 39 (9), 1530-1538.10.1109/22.83828
  27. [27] Lee, J. H., Yang, W. I., Kim, M. J., Booth, J. C., Leong, K., Schima, S., Rudman, D., Lee, S. Y. (2005). Accurate measurements of the intrinsic surface impedance of thin YBa2Cu3O7−d films using a modified two-tone resonator method. IEEE Transactions on Applied Superconductivity, 15 (2), 3700-3705.10.1109/TASC.2005.849399
  28. [28] Kajfez, D. (1994). Linear fractional curve fitting for measurement of high Q factors. IEEE Transactions on Microwave Theory and Techniques, 42 (7), 1149-1153.10.1109/22.299749
  29. [29] Petersan, P. J., Anlage, S. M. (1998). Measurement of resonant frequency and quality factor of microwave resonators: Comparison of methods. Journal of Applied Physics, 84 (6), 3392-3402.10.1063/1.368498
  30. [30] Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery B. P. (2002). Numerical Recipes in C, The Art of Scientific Computing, 2nd Edition. Cambridge University Press.
  31. [31] Hakki, B. W., Coleman, P. D. (1960). A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Transactions on Microwave Theory and Techniques, 8 (4), 402-410.10.1109/TMTT.1960.1124749
  32. [32] Krupka, J., Klinger, M., Kuhn, M., Baranyak, A., Stiller, M., Hinken, J., Modelski, J. (1993). Surface resistance measurements of HTS films by means of sapphire dielectric resonators. IEEE Transactions on Applied Superconductivity, 3 (3), 3043-3048.10.1109/77.234839
  33. [33] Powell, R. L., Fickett, F. R. (1979). Cryogenic Properties of Copper. International Copper Research Association.
  34. [34] Reaney, I. M., Iddles, D. (2006). Microwave dielectric ceramics for resonators and filters in mobile phone networks. Journal of the American Ceramic Society, 89 (7), 2063-2072.10.1111/j.1551-2916.2006.01025.x
  35. [35] Klein, N., Dähne, U., Schulz, H., Tellmann, N., Kutzner, R., Zaitsev, A. G., Wördenweber, R. (1995). Dielectric properties of rutile and its use in high temperature superconducting resonators. Journal of Applied Physics, 78, 6683.10.1063/1.360490
  36. [36] Tinkham, M. (1996). Introduction to Superconductivity, 2nd Edition. McGraw-Hill.
  37. [37] Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I., Vinokur, V. M. (1997). Vortices in high-temperature superconductors. Reviews of Modern Physics, 66, 1377.
  38. [38] Gittleman J., Rosenblum, B. (1966). Radio-frequency resistance in the mixed state for subcritical currents. Physical Review Letters, 16, 734.10.1103/PhysRevLett.16.734
  39. [39] Leong, K., Mazierska, J. (2001). Accurate measurements of surface resistance of HTS films using a novel transmission mode Q-Factor technique. Journal of Superconductivity and Novel Magnetism, 41 (1), 93-103.
  40. [40] Leong, K., Mazierska, J. (2002). Precise measurements of the Q factor of dielectric resonators in the transmission mode-accounting for noise, crosstalk, delay of uncalibrated lines, coupling loss, and coupling reactance. IEEE Transactions on Microwave Theory and Techniques, 50 (9), 2115-2127.10.1109/TMTT.2002.802324
  41. [41] Mazierska, J., Wilker, C. (2001). Accuracy issues in surface resistance measurements of high temperature superconductors using dielectric resonators (corrected). IEEE Transactions on Applied Superconductivity, 11 (4), 4140-4147.10.1109/77.979858
  42. [42] Torokhtii, K., Attanasio, C., Cirillo, C., Ilyina, E.A., Pompeo, N., Sarti, S., Silva, E. (2012). Vortex motion in Nb/PdNi/Nb trilayers: New aspects in the flux flow state. Physica C, 479, 140142. 10.1016/j.physc.2011.12.011
Language: English
Page range: 164 - 170
Submitted on: Jul 25, 2013
Accepted on: May 20, 2014
Published on: Jun 17, 2014
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2014 N. Pompeo, K. Torokhtii, E. Silva, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.