Have a personal or library account? Click to login
Design and Analysis of a Novel Six-Component F/T Sensor based on CPM for Passive Compliant Assembly Cover

Design and Analysis of a Novel Six-Component F/T Sensor based on CPM for Passive Compliant Assembly

Open Access
|Nov 2013

References

  1. [1] Nakamura, Y., Yoshikawa, T., Futamata, I. (1998). Design and signal processing of six-axis force sensors. In Robotics Research : The Fourth InternationalSymposium. MIT Press, 75-81.
  2. [2] Kim, J.H., Kang, D.I., Shin, H.H., Park, Y.K. (2003). Design and analysis of a column type multicomponent force/moment sensor. Measurement, 33, 213-219.10.1016/S0263-2241(02)00044-1
  3. [3] Kim, G.S. (2001). The design of a six-component force/moment sensor and evaluation of its uncertainty. Measurement Science and Technology, 12 (9), 1445-1455.10.1088/0957-0233/12/9/310
  4. [4] Hashimoto, K. et al. (2013). Overload protection mechanism for 6-axis force/torque sensor. In Romansy19 - Robot Design, Dynamics and Control. Springer, Vol. 544, 383-390.
  5. [5] Liu, S.A., Tzo, H.L. (2002). A novel six-component force sensor of good measurement isotropy and sensitivities. Sensors and Actuators A: Physical, 100 (2-3), 223-230.10.1016/S0924-4247(02)00135-8
  6. [6] Liang, Q., Zhang, D., Wang, Y., Coppola, G., Ge, Y. (2013). PM based multi-component F/T sensors-state of the art and trends. Robotics and Computer-Integrated Manufacturing, 29 (4), 1-7.10.1016/j.rcim.2012.12.002
  7. [7] ATI Industrial Automation. Multi-axis force / torquesensors. http://www.ati-ia.com/products/ft/sensors.aspx.
  8. [8] Baki, P., Szekely, G., Kosa, G. (2012). Miniature triaxial force sensor for feedback in minimally invasive surgery. In Biomedical Robotics and Biomechatronics(BioRob) : 4th IEEE RAS & EMBS InternationalConference, 24-27 June 2012. IEEE, 805-810.
  9. [9] Mastinu, G., Gobbi, M., Previati, G. (2011). A new six-axis load cell. Part I: Design. ExperimentalMechanics, 51 (3), 373-388.
  10. [10] Gailler, A., Reboulet, C. (1983). An isostatic six component force and torque sensor. In 13thInternational Symposium on Industrial Robots andRobots 7, 17-21 April 1983. Robotics International of SME.
  11. [11] Dwarakanath, T.A., Bhaumick, T.K., Venkatesh, D. (1999). Implementation of Stewart platform based force-torque sensor. In Multisensor Fusion andIntegration for Intelligent Systems (MFI ’99) :IEEE/SICE/RSJ International Conference, 15-18August, 1999, 32-37.10.1109/MFI.1999.815961
  12. [12] Ranganath, R., Nair, P.S., Mruthyunjaya, T.S., Ghosal, A. (2004). A force-torque sensor based on a Stewart platform in a near-singular configuration. Mechanismand Machine Theory, 39 (9), 971-998.10.1016/j.mechmachtheory.2004.04.005
  13. [13] Nguyen, C., Antrazi, S., Zhou, Z. (1991). Analysis and implementation of a 6 DOF Stewart platform-based force sensor for passive compliant robotic assembly. In IEEE Proceedings of Southeastcon ‘91, 7-10 April1991. IEEE, 880-884.10.1109/SECON.1991.147886
  14. [14] Dasgupta, B., Reddy, S., Mruthyunjaya, T.S. (1994).Synthesis of a force-torque sensor based on the Stewart platform mechanism. In Proceedings of theNational Convention of Industrial Problems inMachines and Mechanisms, Bangalore, India, 14-23.
  15. [15] Hou, Y., Zeng, D., Yao, J., Kang, K., Lu, L., Zhao, Y. (2009). Optimal design of a hyperstatic Stewart platform-based force/torque sensor with genetic algorithms. Mechatronics, 19 (2), 199-204.10.1016/j.mechatronics.2008.08.002
  16. [16] Jia, Z.Y., Lin, S., Liu, W. (2010). Measurement method of six-axis load sharing based on the Stewart platform. Measurement, 43 (3), 329-335.10.1016/j.measurement.2009.11.005
  17. [17] Liu, W., Li, Y.J., Jia, Z.Y., Zhang, J., Qian, M. (2011).Research on parallel load sharing principle of piezoelectric six-dimensional heavy force/torque sensor. Mechanical Systems and Signal Processing, 25 (1), 331-343.10.1016/j.ymssp.2010.09.008
  18. [18] Jin, W.L., Mote, C.D., Jr. (1998). A six-component silicon micro force sensor. Sensors and Actuators A:Physical, 65 (2-3), 109-115.10.1016/S0924-4247(97)01671-3
  19. [19] Mei, T., Ge, Y., Chen, Y., Ni, L., Liao, W.H., Xu, Y., Li, W.J. (1999). Design and fabrication of an integrated three-dimensional tactile sensor for space robotic applications. In Micro Electro MechanicalSystems (MEMS ’99) : 12th IEEE InternationalConference, 17-21 January 1999. IEEE, 112-117.
  20. [20] Brookhuis, R.A., Lammerink, T.S.J., Wiegerink, R.J., de Boer, M.J., Elwenspoek, M.C. (2012). 3D force sensor for biomechanical applications. Sensors andActuators A: Physical, 182, 28-33.10.1016/j.sna.2012.04.035
  21. [21] Takenawa, S. (2009). A soft three-axis tactile sensor based on electromagnetic induction. In Mechatronics2009. ICM 2009 : IEEE International Conference, 14-17 April 2009. IEEE, 1-6.
  22. [22] Liu, T., Inoue, Y., Shibata, K., Yamasaki, Y., Nakahama, M. (2004). A six-dimension parallel force sensor for human dynamics analysis. In Robotics,Automation and Mechatronics, 1-3 December 2004.IEEE, 208-212.
  23. [23] Hirose, S., Yoneda, K. (1990). Development of optical six-axial force sensor and its signal calibration considering nonlinear interference. In Robotics andAutomation, 13-18 May 1990. IEEE, 46-53.10.1109/ROBOT.1990.125944
  24. [24] Gobbi, M., Previati, G., Guarneri, P., Mastinu, G. (2011). A new six-axis load cell. Part II: Error analysis, construction and experimental assessment of performances. Experimental Mechanics, 51 (3), 389-399.
  25. [25] Trease, B.P., Moon, Y.M., Kota, S. (2005). Design of large-displacement compliant joints. ASME Journal ofMechanical Design, 127, 788-798.10.1115/1.1900149
  26. [26] Zhu, Z.H., Meguid, S.A. (2008). Vibration analysis of a new curved beam element. Journal of Sound andVibration, 309 (1), 86-95.10.1016/j.jsv.2007.04.051
  27. [27] Wu, T., Chen, J., Chang, S. (2008) A six-DOF prismatic-spherical-spherical parallel compliant nanopositioner. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control, 55 (12), 2544-2551.
  28. [28] Man Bok Hong, Yung-Ho Jo. (2012). Design and evaluation of 2-DOF compliant forceps with forcesensing capability for minimally invasive robot surgery. IEEE Transactions on Robotics, 28 (4), 932-941.10.1109/TRO.2012.2194889
  29. [29] Dong, W., Sun, L., Du, Z. (2008). Stiffness research on a high-precision, large-workspace parallel mechanism with compliant joints. PrecisionEngineering, 32 (3), 222-231.10.1016/j.precisioneng.2007.08.002
  30. [30] Paros, J.M., Weisbord, L. (1965). How to design flexure hinges. Machine Design, 37, 151-156.
  31. [31] Smith, S. (2000). Flexures: Elements of ElasticMechanisms. New York: Gordon and Breach Science Publishers.10.1201/9781482282962
  32. [32] Boyes, W. (2009). Instrumentation Reference Book, 3rd Edition. Burlington, MA: Elsevier.
  33. [33] Sameer A. Joshi. (2002). A comparative study of twoclasses of 3-DOF parallel manipulators. Ph.D. dissertation, Department of Mechanical Engineering, University of Maryland, College Park, MD.
  34. [34] Ouyang, P.R. (2005). Hybrid intelligent machinesystems: Design, modeling and control. Ph.D. dissertation, University of Saskatchewan, Canada.
  35. [35] Liang, Q., Zhang, D., Song, Q., Ge, Y. (2010).Micromanipulator with integrated force sensor based on compliant parallel mechanism. In Robotics andBiomimetics (ROBIO 2010), 14-18 December 2010.IEEE, 709-714.10.1109/ROBIO.2010.5723413
  36. [36] Puangmali, P. et al. (2012). Miniature 3-axis distal force sensor for minimally invasive surgical palpation. IEEE/ASME Transactions on Mechatronics, 17 (4), 646-656.10.1109/TMECH.2011.2116033
  37. [37] Bicchi, A. (1992). A criterion for optimal design of multi-axis force sensors. Robotics and AutonomousSystems, 10 (4), 269-286. 10.1016/0921-8890(92)90005-J
Language: English
Page range: 253 - 264
Published on: Nov 2, 2013
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2013 Qiaokang Liang, Dan Zhang, Yaonan Wang, Yunjian Ge, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.

Volume 13 (2013): Issue 5 (October 2013)