Have a personal or library account? Click to login
Influence of elevated temperature on bond performance of basalt FRP bars with steel fiber-reinforced concrete Cover

Influence of elevated temperature on bond performance of basalt FRP bars with steel fiber-reinforced concrete

Open Access
|Dec 2025

Figures & Tables

Figure 1

(a) Steel fibers; (b) BFRP rebars used in the study; and (c) BFRP rebar's surface profile.
(a) Steel fibers; (b) BFRP rebars used in the study; and (c) BFRP rebar's surface profile.

Figure 2

Beam-end test specimen details (all dimensions are in mm).
Beam-end test specimen details (all dimensions are in mm).

Figure 3

Temperature–time variation followed in heating and cooling.
Temperature–time variation followed in heating and cooling.

Figure 4

Setup for testing beam end specimens.
Setup for testing beam end specimens.

Figure 5

Failure modes of rebars embedded in PC and FRC.
Failure modes of rebars embedded in PC and FRC.

Figure 6

Comparison of bond strength of rebars embedded in PC and FRC after exposure to different temperatures: (a) steel vs BFRP bars in PC; (b) steel vs BFRP bars in FRC; (c) steel bars in PC vs FRC; and (d) BFRP bars in PC vs FRC.
Comparison of bond strength of rebars embedded in PC and FRC after exposure to different temperatures: (a) steel vs BFRP bars in PC; (b) steel vs BFRP bars in FRC; (c) steel bars in PC vs FRC; and (d) BFRP bars in PC vs FRC.

Figure 7

Bond stress–slip curves of steel and BFRP rebars embedded in PC and FRC after exposure to different temperatures: (a) steel bar embedded in PC; (b) BFRP bar embedded in PC; (c) steel bar embedded in FRC; and (d) BFRP bar embedded in FRC.
Bond stress–slip curves of steel and BFRP rebars embedded in PC and FRC after exposure to different temperatures: (a) steel bar embedded in PC; (b) BFRP bar embedded in PC; (c) steel bar embedded in FRC; and (d) BFRP bar embedded in FRC.

Figure 8

Modified mBPE model vs experimental bond stress–slip curves of rebars embedded in PC at ambient and elevated temperatures: (a, c, and e) steel rebars exposed to ambient temperature, 100°C, and 200°C; and (b, d, and f) BFRP rebars exposed to ambient temperature, 100°C, and 200°C.
Modified mBPE model vs experimental bond stress–slip curves of rebars embedded in PC at ambient and elevated temperatures: (a, c, and e) steel rebars exposed to ambient temperature, 100°C, and 200°C; and (b, d, and f) BFRP rebars exposed to ambient temperature, 100°C, and 200°C.

Figure 9

Modified mBPE model vs experimental bond stress–slip curves of rebars embedded in FRC at ambient and elevated temperatures: (a, c, and e) steel rebars exposed to ambient temperature, 100°C, and 200°C; and (b, d, and f) BFRP rebars exposed to ambient temperature, 100°C, and 200°C.
Modified mBPE model vs experimental bond stress–slip curves of rebars embedded in FRC at ambient and elevated temperatures: (a, c, and e) steel rebars exposed to ambient temperature, 100°C, and 200°C; and (b, d, and f) BFRP rebars exposed to ambient temperature, 100°C, and 200°C.

Figure 10

Comparison of predicted and experimental bond strength for: (a) steel rebars embedded in PC and (b) steel rebars embedded in FRC.
Comparison of predicted and experimental bond strength for: (a) steel rebars embedded in PC and (b) steel rebars embedded in FRC.

Figure 11

Comparison of predicted with experimental bond strength for: (a) BFRP rebars embedded in PC and (b) BFRP rebars embedded in FRC.
Comparison of predicted with experimental bond strength for: (a) BFRP rebars embedded in PC and (b) BFRP rebars embedded in FRC.

Test matrix_

S. No.Specimen IDVolume fraction of steel fibersType of test rebarDiameter of rebar (mm)Exposure temperatureNo. of test specimens
1PCSB-A0Steel12Ambient temperature2
2PCSB-1000Steel12100°C2
3PCSB-2000Steel12200°C2
4FRCSB-A1%Steel12Ambient temperature2
5FRCSB-1001%Steel12100°C2
6FRCSB-2001%Steel12200°C2
7PCBB-A0BFRP12Ambient temperature2
8PCBB-1000BFRP12100°C2
9PCBB-2000BFRP12200°C2
10FRCBB-A1%BFRP12Ambient temperature2
11FRCBB-1001%BFRP12100°C2
12FRCBB-2001%BFRP12200°C2
Total = 24

Equations of bond model parameters as a function of exposure temperature_

Embedded in PC*Embedded in FRC*
Steel rebars
α = 0.0005 T + 0.867 \alpha =0.0005T+0.867 (R 2 = 0.99) α = 0.001 T + 0.525 \alpha =0.001T+0.525 (R 2 = 0.99)
ρ = 0.0001 T 2 0.0282 T + 2.114 \rho =0.0001{T}^{2}-0.0282T+2.114 (R 2 = 1.00) ρ = 9 × 10 6 T 2 0.0009 T + 0.21 \rho =9\times {10}^{-6}{T}^{2}-0.0009T+0.21 (R 2 = 1.00)
s max = 0.0031 T + 2.844 {s}_{\max }=0.0031T+2.844 (R 2 = 0.98) s max = 0.0077 T + 1.167 {s}_{\max }=0.0077T+1.167 (R 2 = 0.86)
r = 0.0006 T + 0.1885 r=0.0006T+0.1885 (R 2 = 0.99) r = 0.0006 T + 0.1885 r=0.0006T+0.1885 (R 2 = 0.99)
BFRP rebars
α = 0.0009 T + 0.652 \alpha =0.0009T+0.652 (R 2 = 0.93) α = 0.0011 T + 0.652 \alpha =0.0011T+0.652 (R 2 = 0.89)
ρ = 0.0024 T + 0.0762 \rho =0.0024T+0.0762 (R 2 = 0.99) ρ = 2 × 10 5 T + 0.102 \rho =2\times {10}^{-5}T+0.102 (R 2 = 1.00)
s max = 0.005 T + 1.978 {s}_{\max }=0.005T+1.978 (R 2 = 0.79) s max = 0.0015 T + 1.796 {s}_{\max }=0.0015T+1.796 (R 2 = 0.95)
r = 0.0017 T + 0.244 r=0.0017T+0.244 (R 2 = 0.88) r = 0.0017 T + 0.244 r=0.0017T+0.244 (R 2 = 0.88)

Codes and researchers’ models for bond strength of steel rebars embedded in concrete*_

Code/ResearcherModel for ambient temperatureModel for elevated temperature
ACI 408R-03 [26] τ max , 20 = 20 f c ' d b {\tau }_{\max ,20}=20\frac{\sqrt{{f}_{\text{c}}^{\text{'}}}}{{d}_{\text{b}}} NA
CEB-FIP Model Code [34] τ max , 20 = 2 f c ' {\tau }_{\max ,20}=2\sqrt{{f}_{\text{c}}^{\text{'}}} NA
CEB-FIP Model Code [35] τ max , 20 = 2.5 f c ' {\tau }_{\max ,20}=2.5\sqrt{{f}_{\text{c}}^{\text{'}}} NA
Huang [36] τ max , 20 = 2.5 f c ' {\tau }_{\max ,20}=2.5\sqrt{{f}_{\text{c}}^{\text{'}}} τ max , T = 2.5 f c ' for 20 T 400 C f c ' 0.4 for 400 < T 800 C 0 for T > 800 C {\tau }_{\max ,T}=\left\{\begin{array}{c}2.5\sqrt{{f}_{\text{c}}^{\text{'}}}\text{for}20\le T\le \text{400}{}^{\circ }\text{C}\\ {f}_{\text{c}}^{\text{'}}0.4\text{for}400\lt T\le \text{800}{}^{\circ }\text{C}\\ 0\text{for}T\gt \text{800}{}^{\circ }\text{C}\end{array}\right.
Lublóy and György [37] τ max , 20 = 2 f c ' {\tau }_{\max ,20}=2\sqrt{{f}_{\text{c}}^{\text{'}}} τ max , T = 2 f c ' 1.0 0.22 360 ( T 20 ) for 20 T 380 C 2 f c ' 0.78 0.75 270 ( T 380 ) for 380 < T 650 C 0.06 f c ' for T > 650 C {\tau }_{\max ,T}=\left\{\begin{array}{c}2\sqrt{{f}_{\text{c}}^{\text{'}}}\left(1.0-\frac{0.22}{360}(T-20)\right)\text{for}20\le T\le \text{380}{}^{\circ }\text{C}\\ 2\sqrt{{f}_{\text{c}}^{\text{'}}}\left(0.78-\frac{0.75}{270}(T-380)\right)\text{for}380\lt T\le \text{650}{}^{\circ }\text{C}\\ 0.06\sqrt{{f}_{\text{c}}^{\text{'}}}\text{for}T\gt \text{650}{}^{\circ }\text{C}\end{array}\right.

Prediction of bond strength of BFRP rebars using codes and researchers’ models_

Specimen IDBond strength model
ACI 440.1R-15 [8]CAN/CSA-S6-14 [11]JSCE [38]Model (1) – El-Gamal [39]Model (2) – El-Gamal [39]Özkal et al. [40]
τ max , TH {\tau }_{\max ,\text{TH}} (MPa) τ max , TH τ max , EXP \frac{{\tau }_{\max ,\text{TH}}}{{\tau }_{\max ,\text{EXP}}} τ max , TH {\tau }_{\max ,\text{TH}} (MPa) τ max , TH τ max , EXP \frac{{\tau }_{\max ,\text{TH}}}{{\tau }_{\max ,\text{EXP}}} τ max , TH {\tau }_{\max ,\text{TH}} (MPa) τ max , TH τ max , EXP \frac{{\tau }_{\max ,\text{TH}}}{{\tau }_{\max ,\text{EXP}}} τ max , TH {\tau }_{\max ,\text{TH}} (MPa) τ max , TH τ max , EXP \frac{{\tau }_{\max ,\text{TH}}}{{\tau }_{\max ,\text{EXP}}} τ max , TH {\tau }_{\max ,\text{TH}} (MPa) τ max , TH τ max , EXP \frac{{\tau }_{\max ,\text{TH}}}{{\tau }_{\max ,\text{EXP}}} τ max , TH {\tau }_{\max ,\text{TH}} (MPa) τ max , TH τ max , EXP \frac{{\tau }_{\max ,\text{TH}}}{{\tau }_{\max ,\text{EXP}}}
PCBB-A13.500.818.400.516.470.3910.930.6616.200.9813.500.81
PCBB-100NANANA8.850.4814.120.7711.680.63
PCBB-200NANANA6.250.3511.530.6410.020.56
FRCBB-A14.130.978.800.616.810.4711.430.7916.961.1714.130.97
FRCBB-100NANANA9.360.5214.880.8312.220.68
FRCBB-200NANANA6.760.4012.280.7210.490.62

Prediction of bond strength of steel rebars using codes and researchers’ models*_

Specimen IDBond strength model
ACI 408R-03 [26]CEB-FIP model code [34]CEB-FIP model code [35]Huang [36]Lublóy & György [37]
τ max , TH {\tau }_{\max ,\text{TH}} (MPa) τ max , TH τ max , EXP \frac{{\tau }_{\max ,\text{TH}}}{{\tau }_{\max ,\text{EXP}}} τ max , TH {\tau }_{\max ,\text{TH}} (MPa) τ max , TH τ max , EXP \frac{{\tau }_{\max ,\text{TH}}}{{\tau }_{\max ,\text{EXP}}} τ max , TH {\tau }_{\max ,\text{TH}} (MPa) τ max , TH τ max , EXP \frac{{\tau }_{\max ,\text{TH}}}{{\tau }_{\max ,\text{EXP}}} τ max , TH {\tau }_{\max ,\text{TH}} (MPa) τ max , TH τ max , EXP \frac{{\tau }_{\max ,\text{TH}}}{{\tau }_{\max ,\text{EXP}}} τ max , TH {\tau }_{\max ,\text{TH}} (MPa) τ max , TH τ max , EXP \frac{{\tau }_{\max ,\text{TH}}}{{\tau }_{\max ,\text{EXP}}}
PCSB-A10.800.5612.960.6716.200.8412.960.6716.200.84
PCSB-100NANANA12.330.6516.200.86
PCSB-200NANANA11.540.8016.201.13
FRCSB-A11.30.6313.560.7616.960.9513.560.7616.960.95
FRCSB-100NANANA12.900.7416.960.97
FRCSB-200NANANA12.070.8316.961.17

mBPE model parameters obtained by curve fitting_

Concrete typeRebar typeExposure temperatureModel parameters
α \alpha ρ \rho r r s max
PCSteel rebarAmbient temperature0.881.5000.152.895
100°C0.910.7500.123.200
200°C0.962.3000.553.445
BFRP rebarAmbient temperature0.690.1240.3001.955
100°C0.720.3400.1002.735
200°C0.850.5500.182.865
FRCSteel rebarAmbient temperature0.550.1900.201.540
100°C0.620.2050.251.615
200°C0.720.3800.302.835
BFRP rebarAmbient temperature0.700.1000.251.630
100°C0.720.1100.482.295
200°C0.880.1050.561.935

Compressive and splitting tensile strengths of concrete at ambient and elevated temperature_

Concrete typeCompressive strength (MPa)Splitting tensile strength (MPa)
Ambient temperature200 °CAmbient temperature200 °C
PC42.0 ± 2.841.4 ± 3.23.8 ± 0.23.7 ± 0.3
FRC46.0 ± 3.145.2 ± 3.36.0± 0.55.8 ± 0.6

Summary of study results_

Specimen IDPeak force (kN)Average bond strength (MPa)Slip at peak load (mm)Residual bond stress (MPa)Failure mode*
PCSB-A43.9 ± 2.4019.3 ± 1.052.895 ± 0.122.9 ± 0.14P & S
PCSB-10042.8 ± 2.9118.9 ± 1.293.200 ± 0.132.3 ± 0.16P & S
PCSB-20032.5 ± 1.8414.4 ± 0.813.445 ± 0.157.9 ± 0.54P & S
FRCSB-A40.4 ± 2.5117.9 ± 1.111.540 ± 0.13.6 ± 0.28P
FRCSB-10039.3 ± 3.1017.4 ± 1.371.615 ± 0.124.4 ± 0.28P
FRCSB-20032.9 ± 2.3714.5 ± 1.052.835 ± 0.244.4 ± 0.35P
PCBB-A37.5 ± 1.5816.6 ± 0.71.955 ± 0.095.0 ± 0.28P & S
PCBB-10041.7 ± 2.4218.4 ± 1.072.735 ± 0.151.8 ± 0.13P & S
PCBB-20040.7 ± 2.4618.0 ± 1.092.865 ± 0.193.2 ± 0.28P & S
FRCBB-A32.9 ± 2.1314.5 ± 0.941.630 ± 0.083.6 ± 0.25P
FRCBB-10040.7 ± 3.3418.0 ± 1.482.295 ± 0.128.7 ± 0.64P
FRCBB-20038.5 ± 3.0217.0 ± 1.341.935 ± 0.139.5 ± 0.78P & S

Codes and researchers’ models for bond strength of BFRP bars embedded in concrete*_

Code/ResearcherModel for ambient temperatureModel for elevated temperature
ACI 440.1R-15 [8] τ max , 20 = 0.083 f c ' 4.0 + 0.3 C d b + 100 d b e {\tau }_{\max ,20}=0.083\sqrt{{f}_{c}^{\text{'}}}\left(\phantom{\rule[-0.75em]{}{0ex}},4.0+0.3\frac{C}{{d}_{b}}+100\frac{{d}_{b}}{{\ell }_{e}}\right) NA
CAN/CSA-S6-14 [11] τ max , 20 = 0.4 f c ' d c s 0.45 π d b k 1 k 4 {\tau }_{\max ,20}=\frac{0.4\sqrt{{f}_{c}^{\text{'}}}{d}_{cs}}{0.45\pi {d}_{b}{k}_{1}{k}_{4}} NA
JSCE [38] τ max , 20 = 0.318 + 0.795 c d b 3.2 f c ' 53.2 f fu {\tau }_{\max ,20}=\frac{0.318+0.795\frac{c}{{d}_{\text{b}}}}{\frac{3.2}{\sqrt{{f}_{\text{c}}^{\text{'}}}}-\frac{53.2}{{f}_{\text{fu}}}} NA
Model (1) – El-Gamal [39] τ max , 20 = 20.23 f c ' d b {\tau }_{\max ,20}=20.23\frac{\sqrt{{f}_{\text{c}}^{\text{'}}}}{{d}_{\text{b}}} τ max , T = 20.23 f c ' d b 0.015 Δ T t {\tau }_{\max ,T}=20.23\frac{\sqrt{{f}_{\text{c}}^{\text{'}}}}{{d}_{\text{b}}}-0.015\Delta T\sqrt{t}
Model (2) – El-Gamal [39] τ max , 20 = 2.5 f c ' {\tau }_{\max ,20}=2.5\sqrt{{f}_{\text{c}}^{\text{'}}} τ max , T = 2.5 f c ' 0.015 Δ T t {\tau }_{\max ,T}=2.5\sqrt{{f}_{\text{c}}^{\text{'}}}-0.015\Delta T\sqrt{t}
Özkal et al. [40] τ max , 20 = 0.083 f c ' 4.0 + 0.3 C d b + 100 d b e {\tau }_{\max ,20}=0.083\sqrt{{f}_{\text{c}}^{\text{'}}}\left(\phantom{\rule[-0.75em]{}{0ex}},4.0+0.3\frac{C}{{d}_{\text{b}}}+100\frac{{d}_{\text{b}}}{{\ell }_{\text{e}}}\right) τ max , T = γ f η f f ( T ) 20 T 600 C γ f = τ max , FRP , 20 τ max , steel, 20 η f = 1473 T 1,450 f ( T ) = 0.981 τ max , steel , 20 1 T 1,450 τ max , steel, 20 = 20 f c ' d b τ max , FRP , 20 = 0.083 f c ' 4.0 + 0.3 C d b + 100 d b e \begin{array}{c}{\tau }_{\max ,T}={\gamma }_{\text{f}}{\eta }_{\text{f}}f(T)\text{20}\le T\le 600{}^{\circ }\text{C}\\ {\gamma }_{f}=\frac{{\tau }_{\max ,\text{FRP},20}}{{\tau }_{\max ,\text{steel,}20}}\\ {\eta }_{f}=\frac{1473-T}{\mathrm{1,450}}\\ f(T)=0.981{\tau }_{\max ,\text{steel},20}\left(\phantom{\rule[-0.75em]{}{0ex}},1-\frac{T}{\mathrm{1,450}}\right)\\ {\tau }_{\max ,\text{steel,}20}=20\frac{\sqrt{{f}_{\text{c}}^{\text{'}}}}{{d}_{\text{b}}}\\ {\tau }_{\max ,\text{FRP},20}=0.083\sqrt{{f}_{\text{c}}^{\text{'}}}\left(\phantom{\rule[-0.75em]{}{0ex}},4.0+0.3\frac{C}{{d}_{\text{b}}}+100\frac{{d}_{\text{b}}}{{\ell }_{\text{e}}}\right)\end{array}
DOI: https://doi.org/10.2478/msp-2025-0050 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 221 - 242
Submitted on: Aug 17, 2025
|
Accepted on: Dec 14, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mohammed Abdulaziz, Husain Abbas, Hussein Elsanadedy, Aref Abadel, Tarek Almusallam, Yousef Al-Salloum, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.