References
- Fernandez de Grado, G., Keller, L., Idoux-Gillet, Y., Wagner, Q., Musset, A.M., Benkirane-Jessel, N., et al., Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone defects management, J. Tissue Eng., 2018, 9: 2041731418776819
- Roddy, E., DeBaun, M.R., Daoud-Gray, A., Yang, Y.P., Gardner, M.J., Treatment of critical-sized bone defects: clinical and tissue engineering perspectives, Eur. J. Orthop. Surg. Traumatol., 2018, 28: 351–362
- Wang, W., Yeung, K.W., Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioact. Mater., 2017, 2(4): 224–247
- Battafarano, G., Rossi, M., De Martino, V., Marampon, F., Borro, L., Secinaro, A., et al., Strategies for bone regeneration: From graft to tissue engineering, Int. J. Mol. Sci., 2018, 22(3): 1128
- Nik Md Noordin Kahar, N.N.F., Osman, A.F., Alosime, E., Arsat, N., Mohammad Azman, N.A., Syamsir, A., et al., The versatility of polymeric materials as self-healing agents for various types of applications: A review, Polymers, 2021, 13(8): 1194
- Xue, X., Hu, Y., Wang, S., Chen, X., Jiang, Y., Su, J., Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering, Bioact. Mater., 2022, 12: 327–339
- Motta, C., Xing, Q., Wilkins, C., Allickson, J., Tissue engineering and regenerative medicine. In Rossi’s Principles of Transfusion Medicine, pp. 648–659
- Zhao, R., Yang, R., Cooper, P.R., Khurshid, Z., Shavandi, A., Ratnayake, J., Bone grafts and substitutes in dentistry: A review of current trends and developments, Molecules, 2021, 26(10): 3007
- Alvarez Echazu, M.I., Perna, O., Olivetti, C.E., Antezana, P.E., Municoy, S., Tuttolomondo, M.V., et al., Recent advances in synthetic and natural biomaterials based therapy for bone defects, Macromol. Biosci., 2022, 22(4): 2100383
- Adamiak, K., Sionkowska, A., State of innovation in alginate-based materials, Mar. Drugs, 2023, 21(6): 353
- Khalid, S.A., Abo Dena, A.S., El-Sherbiny, I.M., Biopolymeric-inorganic composites for drug delivery applications, In Polymeric and natural composites: Materials, manufacturing and biomedical applications, 2022, pp. 271–298
- Mohammadinejad, R., Kumar, A., Ranjbar-Mohammadi, M., Ashrafizadeh, M., Han, S.S., Khang, G., et al., Recent advances in natural gum-based biomaterials for tissue engineering and regenerative medicine: A review, Polymers, 2020, 12(1): 176
- Shariatinia, Z., Biopolymeric nanocomposites in drug delivery, Adv. Biopolym. Syst. Drug. Delivery, 2020: 233–290
- Shanmugavadivu, A., Lavanya, K., Selvamurugan, N., Nanomaterials in bone tissue engineering, In Handbook of Nanomaterials, 2024, vol. 2, pp. 321–357
- Aziz, S.B., Salih, S.J., Hadi, J.M., Brza, M.A., A comprehensive review on the biodegradable polymeric composites based on polyvinyl alcohol/chitosan blends for tissue engineering applications, Int. J. Polym. Mater. Poly. Biomater., 2019, 68(9): 499–507
- de Campos, T.M.B., Vasconcellos, L.M.R., Graeff, C.F.O., Camargo, S.E.A., Panzeri, H., TiO2 nanotubes: A promising surface for biomedical applications, Mater. Sci. Eng.: C., 2013, 33(3): 1252–1260
- Jagadeeswaran, G., Srinivasan, P., Sethuraman, S., Carboxymethyl cellulose scaffolds for tissue engineering applications, J. Biomed. Mater. Res. Part. A, 2016, 104(9): 2231–2240
- Rol, F., Belgacem, M.N., Gandini, A., Bras, J., Recent advances in surface-modified cellulose nanofibrils, Prog. Polym. Sci., 2019, 88: 241–264
- Wang, S., Lu, A., Zhang, L., Recent advances in regenerated cellulose materials, Prog. Polym. Sci., 2018, 82: 127–163
- Ikono, R., Kurniawan, D., Haryadi, G.D., Subroto, T., Widiyandari, H., The role of TiO₂-based materials in bone tissue engineering, J. Biomed. Mater. Res. Part. B: Appl. Biomater., 2019, 107(5): 1536–1550
- Chen, Q., Wang, X., Synthesis and characterization of TiO2–cellulose composite for biomedical applications, Mater. Sci. Eng.: C., 2006, 26(7): 1306–1310
- Wang, Z., Xiang, P., Xu, Z., Gu, M., Zhang, R., Li, Y., et al., Modulating osteoclast activity and immune responses with ultra-low-dose silver nanoparticle-loaded TiO2 nanotubes for osteoporotic bone regeneration, J. Funct. Biomater., 2025, 16(5): 162
- Souza, J.C., Apaza-Bedoya, K., Benfatti, C.A., Silva, F.S., Henriques, B., A comprehensive review on the corrosion pathways of titanium dental implants and their biological adverse effects, Metals, 2020, 10(9): 1272
- Nagaraj, K., Radha, S., Deepa, C.G., Raja, K., Umapathy, V., Badgujar, N.P., et al., Photocatalytic advancements and applications of titanium dioxide (TiO2): Progress in biomedical, environmental, and energy sustainability, Next Res., 2025, 2(1): 100180
- Aziz, S.B., Abdullah, O.G., Hussein, S.A., Brza, M.A., Role of polymer blending on the optical band gap and optical parameters of PVA-based polymer electrolytes, Mater. Res. Express, 2021, 8(3): 035305
- Zheng, Y., Monty, J., Linhardt, R.J., Polysaccharide-based scaffolds for tissue engineering applications, Biomater. Sci., 2021, 9(5): 1653–1673
- Wu, S., Weng, Z., Liu, X., Yeung, K.W.K., Chu, P.K., Functionalized TiO2 based nanomaterials for biomedical applications, Adv. Funct. Mater., 2014, 24(35): 5464–5481
- Dos Anjos, K.F.L., da Silva, C.D.C., de Souza, M.A.A., de Mattos, A.B., Coelho, L.C.B.B., Machado, G., et al., The deposition of a lectin from oreochromis niloticus on the surface of titanium dioxide nanotubes improved the cell adhesion, proliferation, and osteogenic activity of osteoblast-like cells, Biomolecules, 2021, 11(12): 1748
- Qi, L., Guo, B., Lu, Q., Gong, H., Wang, M., He, J., et al., Preparation and photocatalytic and antibacterial activities of micro/nanostructured TiO2-based photocatalysts for application in orthopedic implants, Front. Mater., 2022, 9: 914905
- Liao, C., Li, Y., Tjong, S.C., Visible-light active titanium dioxide nanomaterials with bactericidal properties, Nanomaterials, 2020, 10(1): 124
- Zhang, G., Hou, X., Geng, Z., Yusoff, M., Roslan, N.A., Razali, M.H., Enhanced bone regeneration using sodium alginate and polyvinyl alcohol incorporating TiO2 nanoparticles composite film for orthopedic application, Res. Chem., 2025, 13: 102049
- Song, G.J., Choi, Y.S., Hwang, H.S., Lee, C.S., Silver-composited polydopamine nanoparticles: antibacterial and antioxidant potential in nanocomposite hydrogels, Gels, 2023, 9(3): 183
- Khorasani, M.T., Joorabloo, A., Adeli, H., Mansoori-Moghadam, Z., Moghaddam, A., Design and optimization of process parameters of polyvinyl (alcohol)/chitosan/nano zinc oxide hydrogels as wound healing materials, Carbohydr. Polym., 2019, 207: 542–554
- Goins, A., Ramaswamy, V., Dirr, E., Dulany, K., Irby, S., Webb, A., et al., Development of poly (1, 8 octanediol-co-citrate) and poly(acrylic acid) nanofibrous scaffolds for wound healing applications, Biomed. Mater., 2017, 13(1): 015002
- Kokubo, T., Takadama, H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 2006, 27(15): 2907–2915
- Sun, S., Liu, Y., Gao, H., Guan, W., Zhao, Y., Li, G., Cell culture on suspended fiber for tissue regeneration: A review, Int. J. Biol. Macromol., 2024, 268: 131827
- Cotrut, C.M., Ungureanu, E., Ionescu, I.C., Zamfir, R.I., Kiss, A.E., Parau, A.C., et al., Influence of magnesium content on the physico-chemical properties of hydroxyapatite electrochemically deposited on a nanostructured titanium surface, Coatings, 2022, 12(8): 1097
- Cui, Y., Li, H., Li, Y., Mao, L., Novel insights into nanomaterials for immunomodulatory bone regeneration, Nanoscale Adv., 2022, 4(2): 334–352
- Tao, B., Xu, T., Yu, L., Zhang, L., Cao, G., Gong, N., et al., A simple and low-cost method to develop porous egg white scaffolds with controllable shape for cartilage regeneration, Compos. Part. B: Eng., 2025, 295: 112192
- Mukasheva, F., Adilova, L., Dyussenbinov, A., Yernaimanova, B., Abilev, M., Akilbekova, D., Optimizing scaffold pore size for tissue engineering: insights across various tissue types, Front. Bioeng. Biotechnol., 2024, 12: 1444986
- Li, Y., Zhou, M., Zheng, W., Yang, J., Jiang, N., Scaffold-based tissue engineering strategies for soft–hard interface regeneration, Regener. Biomater., 2023: 10: rbac091
- Mehrabi, A., Jalise, S.Z., Hivechi, A., Habibi, S., Kebria, M.M., Haramshahi, M.A., et al., Evaluation of inherent properties of the carboxymethyl cellulose (CMC) for potential application in tissue engineering focusing on bone regeneration, Polymers for Advanced Technologies, 2024, 35(1): e6258
- i Serra, R.S., León-Boigues, L., Sánchez-Laosa, A., Gómez-Estrada, L., Ribelles, J.L.G., Salmeron-Sanchez, M., et al., Role of chemical crosslinking in material-driven assembly of fibronectin (nano) networks: 2D surfaces and 3D scaffolds, Colloids Surf., B, 2016, 148: 324–332
- Shen, P., Wang, X., Wang, L., Zhang, X., Jia, Z., Zhuang, J., et al., Highly elastic layered carboxymethyl cellulose-based porous materials for sensing, Chem. Eng. J., 2025, 520: 165874
- Kim, H., Pyun, K.R., Lee, M.T., Lee, H.B., Ko, S.H., Recent advances in sustainable wearable energy devices with nanoscale materials and macroscale structures, Adv. Funct. Mater., 2022, 32(16): 2110535
- Fan, X., Wang, W., Jiang, N., Qi, B., Li, G., Peng, Z., et al., Non-cytotoxic and bioactive nanocomposite film of natural Arabic gum incorporating TiO2 nanoparticles for bone tissue regeneration, J. Saudi Chem. Soc., 2023, 27(5): 101713
- Li, G., Tan, X., Zhao, W., A’srai, A.I.M., Razali, M.H., In-vitro and in-vivo wound healing studies of Ag@TiO2NRs/GG hydrogel film for skin tissue regeneration, Mater. Res. Express, 2023, 10(4): 045401
- Szymańska-Chargot, M., Pękala, P., Siemińska-Kuczer, A., Zdunek, A., A determination of the composition and structure of the polysaccharides fractions isolated from apple cell wall based on FT-IR and FT-Raman spectra supported by PCA analysis, Food Hydrocoll., 2024, 150: 109688
- Chen, X., Wang, H., Sun, X., Bu, Y., Yan, H., Lin, Q., Chemical characterization and biological properties of titania/hydroxyapatite-promoted biomimetic alginate-chitosan-gelatin composite hydrogels, Ceram. Int., 2023, 49(15): 25744–25756
- Shaibur, M.R., Khatun, Y., Howlader, M., Islam, M.M., Rahman, M.W., Khan, A.S., et al., Determination of water quality and efficient removal of arsenic and iron from groundwater using mahogany fruit husk and banana peduncle charcoals, Res. Eng., 2024, 22: 102220
- Czabany, I., Hribernik, S., Bračič, M., Kurečič, M., Thomas, S., Kleinschek, K.S., et al., Design of stable and new polysaccharide nanoparticles composite and their interaction with solid cellulose surfaces, Nano-Struct. Nano-Objects, 2020, 24: 100564
- Md Fauzi, M.A.F., Razali, M.H., Osman, M.U., Mohd Azam, B., Synthesis and characterisation of TiO2/g-C3N4 as photocatalyst for photodegradation of dyes, phenol and caffeine, Adv. Mater. Process. Technol., 2022, 8(4): 4395–4415
- Wang, K., Li, W., Wu, L., Li, Y., Li, H., Preparation and characterization of chitosan/dialdehyde carboxymethyl cellulose composite film loaded with cinnamaldehyde@ zein nanoparticles for active food packaging, Int. J. Biol. Macromol., 2024, 261: 129586
- Omori, N.E., Bobitan, A.D., Vamvakeros, A., Beale, A.M., Jacques, S.D., Recent developments in X-ray diffraction/scattering computed tomography for materials science, Philos. Trans. R. Soc. A, 2023, 381(2259): 20220350
- Derkus, B., Emregul, E., Emregul, K.C., Yucesan, C., Alginate and alginate-titanium dioxide nanocomposite as electrode materials for anti-myelin basic protein immunosensing, Sens. Actuators, B, 2014, 192: 294–302
- Rahman, P.M., Mujeeb, V.A., Muraleedharan, K., Thomas, S.K., Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties, Arab. J. Chem., 2018, 11(1): 120–127
- Tripathy, T., Singh, R.P., Characterization of polyacrylamide‐grafted sodium alginate: A novel polymeric flocculant, J. Appl. Polym. Sci., 2001, 81(13): 3296–3308
- Archana, D., Singh, B.K., Dutta, J., Dutta, P.K., In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material, Carbohydr. Polym., 2013, 95(1): 530–539
- Han, J., Zhou, Z., Yin, R., Yang, D., Nie, J., Alginate–chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: Preparation and characterization, Int. J. Biol. Macromol., 2010, 46(2): 199–205
- Liu, T., Wang, Y., Kuang, T., Oriented porous polymer scaffolds in tissue engineering: a comprehensive review of preparation strategies and applications, Macromol. Mater. Eng., 2024, 309(1): 2300246
- Hsu, C.S., Haag, S.L., Bernards, M.T., Li, Q., Effects of chloride substitution on physical, mechanical, and biological properties of hydroxyapatite, Ceram. Int., 2021, 47(9): 13207–13215
- Rabiei, M., Palevicius, A., Dashti, A., Nasiri, S., Monshi, A., Vilkauskas, A., et al., Measurement modulus of elasticity related to the atomic density of planes in unit cell of crystal lattices, Materials, 2020, 13(19): 4380
- Zhang, G., Hou, X., Geng, Z., Yusoff, M., Roslan, N.A., Razali, M.H., Enhanced bone regeneration using sodium alginate and polyvinyl alcohol incorporating TiO2 nanoparticles composite film for orthopedic application, Res. Chem., 2025, 13: 102049
- Ansari, M.A.A., Golebiowska, A.A., Dash, M., Kumar, P., Jain, P.K., Nukavarapu, S.P., et al., Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration, Biomater. Sci., 2022, 10(11): 2789–2816
- DileepKumar, V.G., Sridhar, M.S., Aramwit, P., Krut’ko, V.K., Musskaya, O.N., Glazov, I.E., et al., A review on the synthesis and properties of hydroxyapatite for biomedical applications, J. Biomater. Sci, Polym. Ed., 2022, 33(2): 229–261
- Jiang, N., Qi, B., Fan, X., Yao, L., Wang, Y., Zhao, Z., et al., Fabrication of biocompatible and biodegradable polyvinyl alcohol/sodium alginate blend polymers incorporating Ca2+ doped TiO2 nanocomposite 3D scaffold for biomedical applications, J. Saudi Chem. Soc., 2023, 27(6): 101758
- Mahtabian, S., Mirhadi, S.M., Nemati, N.H., Sharifi, M., Tavangarian, F., Influence of Biomimetic Apatite Coating on the Biobehavior of TiO2 Scaffolds, J. Bionic Eng., 2024, 21(4): 1975–1986
- Pauline, S.A., Gopalsamy, K., Nallaiyan, R., Nanostructured Sr, Nb-incorporated TiO2 as an efficient orthopedic implant coating with superior bioactivity and corrosion resistance, J. Mater. Eng. Perform., 2024: 1–10
- Jin, W., Nan, J., Chai, H., Chen, M., Wang, Z., Jia, J., et al., Polyferric-titanium composite coagulants with hydrogen bond domain expansion effect for superior coagulation performance, J. Clean. Prod., 2025, 495: 145070
- Dridi, A., Riahi, K.Z., Somrani, S., Mechanism of apatite formation on a poorly crystallized calcium phosphate in a simulated body fluid (SBF) at 37°C, J. Phys. Chem. Solids, 2021, 156: 110122
- Borji, B.K., Pourmadadi, M., Tajiki, A., Abdouss, M., Rahdar, A., Díez-Pascual, A.M., Polyvinyl pyrrolidone/starch/hydroxyapatite nanocomposite: A promising approach for controlled release of doxorubicin in cancer therapy, J. Drug. Delivery Sci. Technol., 2024, 95: 105516
- Kataoka, T., Liu, Z., Yamada, I., Galindo, T.G.P., Tagaya, M., Surface functionalization of hydroxyapatite nanoparticles for biomedical applications. J. Mater. Chem. B, 2024, 12(28): 6805–6826
- Oliveira, A.L., Costa, S.A.D., Sousa, R.A., Reis, R.L., Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds: effect of static and dynamic coating conditions, Acta Biomater., 2009, 5(5): 1626–1638
- Tan, L., Yuan, Y., Zhao, Z., Xu, Y., Yuan, Y., Insights in mechanism of drying shrinkage by pore-scale modeling of heat-moisture and stress–strain distribution for high-moisture porous media, Int. J. Therm. Sci., 2023, 188: 108226
- Lutzweiler, G., Ndreu Halili, A., Engin Vrana, N., The overview of porous, bioactive scaffolds as instructive biomaterials for tissue regeneration and their clinical translation. Pharmaceutics, 2020, 12(7): 602
- Iqbal, N., Khan, A.S., Asif, A., Yar, M., Haycock, J.W., Rehman, I.U., Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review, Int. Mater. Rev., 2019, 64(2): 91–126
- Chandra, D.K., Kumar, A., Mahapatra, C., Smart nano-hybrid metal–organic frameworks: Revolutionizing advancements, applications, and challenges in biomedical therapeutics and diagnostics, Hybrid. Adv., 2025, 9: 100406