Have a personal or library account? Click to login
Titanium dioxide nanotubes incorporated carboxymethyl cellulose 2D film and 3D scaffold for bone tissue treatment Cover

Titanium dioxide nanotubes incorporated carboxymethyl cellulose 2D film and 3D scaffold for bone tissue treatment

Open Access
|Dec 2025

References

  1. Fernandez de Grado, G., Keller, L., Idoux-Gillet, Y., Wagner, Q., Musset, A.M., Benkirane-Jessel, N., et al., Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone defects management, J. Tissue Eng., 2018, 9: 2041731418776819
  2. Roddy, E., DeBaun, M.R., Daoud-Gray, A., Yang, Y.P., Gardner, M.J., Treatment of critical-sized bone defects: clinical and tissue engineering perspectives, Eur. J. Orthop. Surg. Traumatol., 2018, 28: 351–362
  3. Wang, W., Yeung, K.W., Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioact. Mater., 2017, 2(4): 224–247
  4. Battafarano, G., Rossi, M., De Martino, V., Marampon, F., Borro, L., Secinaro, A., et al., Strategies for bone regeneration: From graft to tissue engineering, Int. J. Mol. Sci., 2018, 22(3): 1128
  5. Nik Md Noordin Kahar, N.N.F., Osman, A.F., Alosime, E., Arsat, N., Mohammad Azman, N.A., Syamsir, A., et al., The versatility of polymeric materials as self-healing agents for various types of applications: A review, Polymers, 2021, 13(8): 1194
  6. Xue, X., Hu, Y., Wang, S., Chen, X., Jiang, Y., Su, J., Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering, Bioact. Mater., 2022, 12: 327–339
  7. Motta, C., Xing, Q., Wilkins, C., Allickson, J., Tissue engineering and regenerative medicine. In Rossi’s Principles of Transfusion Medicine, pp. 648–659
  8. Zhao, R., Yang, R., Cooper, P.R., Khurshid, Z., Shavandi, A., Ratnayake, J., Bone grafts and substitutes in dentistry: A review of current trends and developments, Molecules, 2021, 26(10): 3007
  9. Alvarez Echazu, M.I., Perna, O., Olivetti, C.E., Antezana, P.E., Municoy, S., Tuttolomondo, M.V., et al., Recent advances in synthetic and natural biomaterials based therapy for bone defects, Macromol. Biosci., 2022, 22(4): 2100383
  10. Adamiak, K., Sionkowska, A., State of innovation in alginate-based materials, Mar. Drugs, 2023, 21(6): 353
  11. Khalid, S.A., Abo Dena, A.S., El-Sherbiny, I.M., Biopolymeric-inorganic composites for drug delivery applications, In Polymeric and natural composites: Materials, manufacturing and biomedical applications, 2022, pp. 271–298
  12. Mohammadinejad, R., Kumar, A., Ranjbar-Mohammadi, M., Ashrafizadeh, M., Han, S.S., Khang, G., et al., Recent advances in natural gum-based biomaterials for tissue engineering and regenerative medicine: A review, Polymers, 2020, 12(1): 176
  13. Shariatinia, Z., Biopolymeric nanocomposites in drug delivery, Adv. Biopolym. Syst. Drug. Delivery, 2020: 233–290
  14. Shanmugavadivu, A., Lavanya, K., Selvamurugan, N., Nanomaterials in bone tissue engineering, In Handbook of Nanomaterials, 2024, vol. 2, pp. 321–357
  15. Aziz, S.B., Salih, S.J., Hadi, J.M., Brza, M.A., A comprehensive review on the biodegradable polymeric composites based on polyvinyl alcohol/chitosan blends for tissue engineering applications, Int. J. Polym. Mater. Poly. Biomater., 2019, 68(9): 499–507
  16. de Campos, T.M.B., Vasconcellos, L.M.R., Graeff, C.F.O., Camargo, S.E.A., Panzeri, H., TiO2 nanotubes: A promising surface for biomedical applications, Mater. Sci. Eng.: C., 2013, 33(3): 1252–1260
  17. Jagadeeswaran, G., Srinivasan, P., Sethuraman, S., Carboxymethyl cellulose scaffolds for tissue engineering applications, J. Biomed. Mater. Res. Part. A, 2016, 104(9): 2231–2240
  18. Rol, F., Belgacem, M.N., Gandini, A., Bras, J., Recent advances in surface-modified cellulose nanofibrils, Prog. Polym. Sci., 2019, 88: 241–264
  19. Wang, S., Lu, A., Zhang, L., Recent advances in regenerated cellulose materials, Prog. Polym. Sci., 2018, 82: 127–163
  20. Ikono, R., Kurniawan, D., Haryadi, G.D., Subroto, T., Widiyandari, H., The role of TiO₂-based materials in bone tissue engineering, J. Biomed. Mater. Res. Part. B: Appl. Biomater., 2019, 107(5): 1536–1550
  21. Chen, Q., Wang, X., Synthesis and characterization of TiO2–cellulose composite for biomedical applications, Mater. Sci. Eng.: C., 2006, 26(7): 1306–1310
  22. Wang, Z., Xiang, P., Xu, Z., Gu, M., Zhang, R., Li, Y., et al., Modulating osteoclast activity and immune responses with ultra-low-dose silver nanoparticle-loaded TiO2 nanotubes for osteoporotic bone regeneration, J. Funct. Biomater., 2025, 16(5): 162
  23. Souza, J.C., Apaza-Bedoya, K., Benfatti, C.A., Silva, F.S., Henriques, B., A comprehensive review on the corrosion pathways of titanium dental implants and their biological adverse effects, Metals, 2020, 10(9): 1272
  24. Nagaraj, K., Radha, S., Deepa, C.G., Raja, K., Umapathy, V., Badgujar, N.P., et al., Photocatalytic advancements and applications of titanium dioxide (TiO2): Progress in biomedical, environmental, and energy sustainability, Next Res., 2025, 2(1): 100180
  25. Aziz, S.B., Abdullah, O.G., Hussein, S.A., Brza, M.A., Role of polymer blending on the optical band gap and optical parameters of PVA-based polymer electrolytes, Mater. Res. Express, 2021, 8(3): 035305
  26. Zheng, Y., Monty, J., Linhardt, R.J., Polysaccharide-based scaffolds for tissue engineering applications, Biomater. Sci., 2021, 9(5): 1653–1673
  27. Wu, S., Weng, Z., Liu, X., Yeung, K.W.K., Chu, P.K., Functionalized TiO2 based nanomaterials for biomedical applications, Adv. Funct. Mater., 2014, 24(35): 5464–5481
  28. Dos Anjos, K.F.L., da Silva, C.D.C., de Souza, M.A.A., de Mattos, A.B., Coelho, L.C.B.B., Machado, G., et al., The deposition of a lectin from oreochromis niloticus on the surface of titanium dioxide nanotubes improved the cell adhesion, proliferation, and osteogenic activity of osteoblast-like cells, Biomolecules, 2021, 11(12): 1748
  29. Qi, L., Guo, B., Lu, Q., Gong, H., Wang, M., He, J., et al., Preparation and photocatalytic and antibacterial activities of micro/nanostructured TiO2-based photocatalysts for application in orthopedic implants, Front. Mater., 2022, 9: 914905
  30. Liao, C., Li, Y., Tjong, S.C., Visible-light active titanium dioxide nanomaterials with bactericidal properties, Nanomaterials, 2020, 10(1): 124
  31. Zhang, G., Hou, X., Geng, Z., Yusoff, M., Roslan, N.A., Razali, M.H., Enhanced bone regeneration using sodium alginate and polyvinyl alcohol incorporating TiO2 nanoparticles composite film for orthopedic application, Res. Chem., 2025, 13: 102049
  32. Song, G.J., Choi, Y.S., Hwang, H.S., Lee, C.S., Silver-composited polydopamine nanoparticles: antibacterial and antioxidant potential in nanocomposite hydrogels, Gels, 2023, 9(3): 183
  33. Khorasani, M.T., Joorabloo, A., Adeli, H., Mansoori-Moghadam, Z., Moghaddam, A., Design and optimization of process parameters of polyvinyl (alcohol)/chitosan/nano zinc oxide hydrogels as wound healing materials, Carbohydr. Polym., 2019, 207: 542–554
  34. Goins, A., Ramaswamy, V., Dirr, E., Dulany, K., Irby, S., Webb, A., et al., Development of poly (1, 8 octanediol-co-citrate) and poly(acrylic acid) nanofibrous scaffolds for wound healing applications, Biomed. Mater., 2017, 13(1): 015002
  35. Kokubo, T., Takadama, H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 2006, 27(15): 2907–2915
  36. Sun, S., Liu, Y., Gao, H., Guan, W., Zhao, Y., Li, G., Cell culture on suspended fiber for tissue regeneration: A review, Int. J. Biol. Macromol., 2024, 268: 131827
  37. Cotrut, C.M., Ungureanu, E., Ionescu, I.C., Zamfir, R.I., Kiss, A.E., Parau, A.C., et al., Influence of magnesium content on the physico-chemical properties of hydroxyapatite electrochemically deposited on a nanostructured titanium surface, Coatings, 2022, 12(8): 1097
  38. Cui, Y., Li, H., Li, Y., Mao, L., Novel insights into nanomaterials for immunomodulatory bone regeneration, Nanoscale Adv., 2022, 4(2): 334–352
  39. Tao, B., Xu, T., Yu, L., Zhang, L., Cao, G., Gong, N., et al., A simple and low-cost method to develop porous egg white scaffolds with controllable shape for cartilage regeneration, Compos. Part. B: Eng., 2025, 295: 112192
  40. Mukasheva, F., Adilova, L., Dyussenbinov, A., Yernaimanova, B., Abilev, M., Akilbekova, D., Optimizing scaffold pore size for tissue engineering: insights across various tissue types, Front. Bioeng. Biotechnol., 2024, 12: 1444986
  41. Li, Y., Zhou, M., Zheng, W., Yang, J., Jiang, N., Scaffold-based tissue engineering strategies for soft–hard interface regeneration, Regener. Biomater., 2023: 10: rbac091
  42. Mehrabi, A., Jalise, S.Z., Hivechi, A., Habibi, S., Kebria, M.M., Haramshahi, M.A., et al., Evaluation of inherent properties of the carboxymethyl cellulose (CMC) for potential application in tissue engineering focusing on bone regeneration, Polymers for Advanced Technologies, 2024, 35(1): e6258
  43. i Serra, R.S., León-Boigues, L., Sánchez-Laosa, A., Gómez-Estrada, L., Ribelles, J.L.G., Salmeron-Sanchez, M., et al., Role of chemical crosslinking in material-driven assembly of fibronectin (nano) networks: 2D surfaces and 3D scaffolds, Colloids Surf., B, 2016, 148: 324–332
  44. Shen, P., Wang, X., Wang, L., Zhang, X., Jia, Z., Zhuang, J., et al., Highly elastic layered carboxymethyl cellulose-based porous materials for sensing, Chem. Eng. J., 2025, 520: 165874
  45. Kim, H., Pyun, K.R., Lee, M.T., Lee, H.B., Ko, S.H., Recent advances in sustainable wearable energy devices with nanoscale materials and macroscale structures, Adv. Funct. Mater., 2022, 32(16): 2110535
  46. Fan, X., Wang, W., Jiang, N., Qi, B., Li, G., Peng, Z., et al., Non-cytotoxic and bioactive nanocomposite film of natural Arabic gum incorporating TiO2 nanoparticles for bone tissue regeneration, J. Saudi Chem. Soc., 2023, 27(5): 101713
  47. Li, G., Tan, X., Zhao, W., A’srai, A.I.M., Razali, M.H., In-vitro and in-vivo wound healing studies of Ag@TiO2NRs/GG hydrogel film for skin tissue regeneration, Mater. Res. Express, 2023, 10(4): 045401
  48. Szymańska-Chargot, M., Pękala, P., Siemińska-Kuczer, A., Zdunek, A., A determination of the composition and structure of the polysaccharides fractions isolated from apple cell wall based on FT-IR and FT-Raman spectra supported by PCA analysis, Food Hydrocoll., 2024, 150: 109688
  49. Chen, X., Wang, H., Sun, X., Bu, Y., Yan, H., Lin, Q., Chemical characterization and biological properties of titania/hydroxyapatite-promoted biomimetic alginate-chitosan-gelatin composite hydrogels, Ceram. Int., 2023, 49(15): 25744–25756
  50. Shaibur, M.R., Khatun, Y., Howlader, M., Islam, M.M., Rahman, M.W., Khan, A.S., et al., Determination of water quality and efficient removal of arsenic and iron from groundwater using mahogany fruit husk and banana peduncle charcoals, Res. Eng., 2024, 22: 102220
  51. Czabany, I., Hribernik, S., Bračič, M., Kurečič, M., Thomas, S., Kleinschek, K.S., et al., Design of stable and new polysaccharide nanoparticles composite and their interaction with solid cellulose surfaces, Nano-Struct. Nano-Objects, 2020, 24: 100564
  52. Md Fauzi, M.A.F., Razali, M.H., Osman, M.U., Mohd Azam, B., Synthesis and characterisation of TiO2/g-C3N4 as photocatalyst for photodegradation of dyes, phenol and caffeine, Adv. Mater. Process. Technol., 2022, 8(4): 4395–4415
  53. Wang, K., Li, W., Wu, L., Li, Y., Li, H., Preparation and characterization of chitosan/dialdehyde carboxymethyl cellulose composite film loaded with cinnamaldehyde@ zein nanoparticles for active food packaging, Int. J. Biol. Macromol., 2024, 261: 129586
  54. Omori, N.E., Bobitan, A.D., Vamvakeros, A., Beale, A.M., Jacques, S.D., Recent developments in X-ray diffraction/scattering computed tomography for materials science, Philos. Trans. R. Soc. A, 2023, 381(2259): 20220350
  55. Derkus, B., Emregul, E., Emregul, K.C., Yucesan, C., Alginate and alginate-titanium dioxide nanocomposite as electrode materials for anti-myelin basic protein immunosensing, Sens. Actuators, B, 2014, 192: 294–302
  56. Rahman, P.M., Mujeeb, V.A., Muraleedharan, K., Thomas, S.K., Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties, Arab. J. Chem., 2018, 11(1): 120–127
  57. Tripathy, T., Singh, R.P., Characterization of polyacrylamide‐grafted sodium alginate: A novel polymeric flocculant, J. Appl. Polym. Sci., 2001, 81(13): 3296–3308
  58. Archana, D., Singh, B.K., Dutta, J., Dutta, P.K., In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material, Carbohydr. Polym., 2013, 95(1): 530–539
  59. Han, J., Zhou, Z., Yin, R., Yang, D., Nie, J., Alginate–chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: Preparation and characterization, Int. J. Biol. Macromol., 2010, 46(2): 199–205
  60. Liu, T., Wang, Y., Kuang, T., Oriented porous polymer scaffolds in tissue engineering: a comprehensive review of preparation strategies and applications, Macromol. Mater. Eng., 2024, 309(1): 2300246
  61. Hsu, C.S., Haag, S.L., Bernards, M.T., Li, Q., Effects of chloride substitution on physical, mechanical, and biological properties of hydroxyapatite, Ceram. Int., 2021, 47(9): 13207–13215
  62. Rabiei, M., Palevicius, A., Dashti, A., Nasiri, S., Monshi, A., Vilkauskas, A., et al., Measurement modulus of elasticity related to the atomic density of planes in unit cell of crystal lattices, Materials, 2020, 13(19): 4380
  63. Zhang, G., Hou, X., Geng, Z., Yusoff, M., Roslan, N.A., Razali, M.H., Enhanced bone regeneration using sodium alginate and polyvinyl alcohol incorporating TiO2 nanoparticles composite film for orthopedic application, Res. Chem., 2025, 13: 102049
  64. Ansari, M.A.A., Golebiowska, A.A., Dash, M., Kumar, P., Jain, P.K., Nukavarapu, S.P., et al., Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration, Biomater. Sci., 2022, 10(11): 2789–2816
  65. DileepKumar, V.G., Sridhar, M.S., Aramwit, P., Krut’ko, V.K., Musskaya, O.N., Glazov, I.E., et al., A review on the synthesis and properties of hydroxyapatite for biomedical applications, J. Biomater. Sci, Polym. Ed., 2022, 33(2): 229–261
  66. Jiang, N., Qi, B., Fan, X., Yao, L., Wang, Y., Zhao, Z., et al., Fabrication of biocompatible and biodegradable polyvinyl alcohol/sodium alginate blend polymers incorporating Ca2+ doped TiO2 nanocomposite 3D scaffold for biomedical applications, J. Saudi Chem. Soc., 2023, 27(6): 101758
  67. Mahtabian, S., Mirhadi, S.M., Nemati, N.H., Sharifi, M., Tavangarian, F., Influence of Biomimetic Apatite Coating on the Biobehavior of TiO2 Scaffolds, J. Bionic Eng., 2024, 21(4): 1975–1986
  68. Pauline, S.A., Gopalsamy, K., Nallaiyan, R., Nanostructured Sr, Nb-incorporated TiO2 as an efficient orthopedic implant coating with superior bioactivity and corrosion resistance, J. Mater. Eng. Perform., 2024: 1–10
  69. Jin, W., Nan, J., Chai, H., Chen, M., Wang, Z., Jia, J., et al., Polyferric-titanium composite coagulants with hydrogen bond domain expansion effect for superior coagulation performance, J. Clean. Prod., 2025, 495: 145070
  70. Dridi, A., Riahi, K.Z., Somrani, S., Mechanism of apatite formation on a poorly crystallized calcium phosphate in a simulated body fluid (SBF) at 37°C, J. Phys. Chem. Solids, 2021, 156: 110122
  71. Borji, B.K., Pourmadadi, M., Tajiki, A., Abdouss, M., Rahdar, A., Díez-Pascual, A.M., Polyvinyl pyrrolidone/starch/hydroxyapatite nanocomposite: A promising approach for controlled release of doxorubicin in cancer therapy, J. Drug. Delivery Sci. Technol., 2024, 95: 105516
  72. Kataoka, T., Liu, Z., Yamada, I., Galindo, T.G.P., Tagaya, M., Surface functionalization of hydroxyapatite nanoparticles for biomedical applications. J. Mater. Chem. B, 2024, 12(28): 6805–6826
  73. Oliveira, A.L., Costa, S.A.D., Sousa, R.A., Reis, R.L., Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds: effect of static and dynamic coating conditions, Acta Biomater., 2009, 5(5): 1626–1638
  74. Tan, L., Yuan, Y., Zhao, Z., Xu, Y., Yuan, Y., Insights in mechanism of drying shrinkage by pore-scale modeling of heat-moisture and stress–strain distribution for high-moisture porous media, Int. J. Therm. Sci., 2023, 188: 108226
  75. Lutzweiler, G., Ndreu Halili, A., Engin Vrana, N., The overview of porous, bioactive scaffolds as instructive biomaterials for tissue regeneration and their clinical translation. Pharmaceutics, 2020, 12(7): 602
  76. Iqbal, N., Khan, A.S., Asif, A., Yar, M., Haycock, J.W., Rehman, I.U., Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review, Int. Mater. Rev., 2019, 64(2): 91–126
  77. Chandra, D.K., Kumar, A., Mahapatra, C., Smart nano-hybrid metal–organic frameworks: Revolutionizing advancements, applications, and challenges in biomedical therapeutics and diagnostics, Hybrid. Adv., 2025, 9: 100406
DOI: https://doi.org/10.2478/msp-2025-0048 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 151 - 165
Submitted on: Apr 13, 2025
|
Accepted on: Dec 18, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Lei Ren, Tuo Jia, Mahani Yusoff, Nur Ain Atisya C. M. Khairuddin, Nur Adibah Roslan, Alina Irwana Muhamad A’srai, Mohd Hasmizam Razali, Zhimin Kang, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.