References
- Chen, Y.T., Chang, Y.J., Murakami, H., Gorsse, S., Yeh, A.C., Designing high entropy superalloys for elevated temperature application, Scr. Mater., 2020, 187: 177–182
- Whitfield, T.E., Stone, H.J., Jones, C.N., Jones, N.G., Microstructural degradation of the AlMo0.5NbTa0.5TiZr refractory metal high-entropy superalloy at elevated temperatures, Entropy, 2021, 23(1): 80
- Yang, J.J., Kuo, C.M., Lin, P.T., Liu, H.C., Huang, C.Y., Yen, H.W., et al., Improvement in oxidation behavior of Al0.2Co1.5CrFeNi1.5Ti0.3 high-entropy superalloys by minor Nb addition, J. Alloy. Compd., 2020, 825: 15398
- Senkov, O.N., Jensenb, J.K., Pilchaka, A.L., Miracle, D.B., Fraser, H.L., Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0. 5TiZr, Mater. Des., 2018, 139: 498–511
- Shafiee, A., Moon, J., Kim, H.S., Jahazi, M., Nili-Ahmadabadi, M., Precipitation behaviour and mechanical properties of a new wrought high entropy superalloy, Mater. Sci. Eng. A, 2019, 749: 271–280
- Yurchenko, N., Panina, E., Rogal, Ł., Shekhawat, L., Zherebtsov, S., Stepanov, N., Unique precipitations in a novel refractory Nb-Mo-Ti-Co high-entropy superalloy, Mater. Res. Lett., 2022, 10(2): 78–87
- Cai, Y., Liu, F., Tan, Y., Wang, L., Ji, X., Xiang, S., Synergy effect of multi-strengthening mechanisms in CoNiCr-based high-entropy superalloy at cryogenic temperature, Mater. Sci. Eng. A, 2024, 901: 146531
- Li, Y., Olejarz, A., Kurpaska, Ł., Lu, E., Alava, M.J., Kim, H.S., et al., Designing cobalt-free face-centered cubic high-entropy alloys: A strategy using d-orbital energy level, Int. J. Refract. Met. Hard Mater., 2024, 124: 106834
- Chen, R., Qin, G., Zheng, H., Wang, L., Su, Y., Chiu, Y., et al., Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility, Acta Mater., 2018, 144: 129e137
- Momeni, V., Hufnagl, M., Shahroodi, Z., Gonzalez-Gutierrez, J., Schuschnigg, S., Kukla, C., et al., Research progress on low-pressure powder injection molding, Materials, 2023, 16: 379
- Dehghan-Manshadi, A., Yu, P., Dargusch, M., StJohn, D., Qian, M., Metal injection moulding of surgical tools, biomaterials and medical devices: A review, Powder Technol., 2020, 364: 189–204
- Aslam, M., Ahmad, F., Binti, P.S.M., Yusoff, M., Altafa, K., Omar, M.A., et al., Powder injection molding of biocompatible stainless steel biodevices, Powder Technol., 2016, 295: 84–95
- Won Lee, D., Shin, D.S., Ha, H., Park, S.J., Lee, K.A., Kim, H.S., Modulated heating rate effect on optimizing sintered density and microstructure in CoCrFeMnNi high-entropy alloy fabricated through metal injection molding, Mater. Charact., 2024, 214: 114037
- Meza, A., Barbosa, A., Tabares, E., Torralba, J.M., Tailoring high-entropy alloys via commodity powders for metal injection moulding: A feasibility study, J. Mater. Res. Technol., 2024, 31: 109–116
- Kang, B., Kong, T., Ryu, H.J., Hong, S.H., The outstanding tensile strength of Ni-rich high entropy superalloy fabricated by powder metallurgical process, Mater. Chem. Phys., 2019, 235: 121749
- Suryanarayana, C., Mechanical alloying and milling, Prog. Mater. Sci., 2001, 46(1): 184
- Suryanarayana, C., Mechanical alloying: A critical review, Mater. Res. Lett., 2022, 10(10): 619–647
- Miracle, D.B., Senkov, O.N., A critical review of high entropy alloys and related concepts, Acta Mater., 2017, 122: 448–511
- Cantor, B., Multicomponent high-entropy Cantor alloys, Prog. Mater. Sci., 2021, 120: 100754
- Segall, M.D., Lindan, P.J., Probert, M.A., Pickard, C.J., Hasnip, P.J., Clark, S.J., et al., First-principles simulation: ideas, illustrations and the CASTEPcode, J. Phys. Cond. Matter., 2002, 14: 2717–2744
- Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I., Refson, K., et al., First principles methods using CASTEP, Z. Kristallogr.-Cryst. Mater., 2005, 220: 567–570
- Chen, H.L., Lin, L., Mao, P.L., Liu, Z., Phase stability, electronic, elastic and thermodynamic properties of Al-RE intermetallics in Mg-Al-RE alloy: A first principles study, J. Magnes. Alloy., 2015, 3: 197–202
- Sahara, R., Emura, S., Tsuchiya, K., Theoretical investigation of effect of alloying elements on phase stability in body-centered cubic Ti-X alloys (X= V, Cr, Fe, Co, Nb, and Mo), J. Alloy. Compd., 2015, 634: 193–199
- Mao, P., Yu, B., Liu, Z., Wang, F., Ju, Y., First-principles calculations of structural, elastic and electronic properties of AB2 type intermetallics in Mg–Zn–Ca–Cu alloy, J. Magnes. Alloy., 2013, 1: 256–262
- Lozynskyi, V., Trembach, B., Hossain, M.M., Kabir, M.H., Silchenko, Y., Krbata, M., et al., Prediction of phase composition and mechanical properties Fe–Cr–C–B–Ti–Cu hardfacing alloys: Modeling and experimental Validations, Heliyon, 2024, 10: e25199
- Shitara, K., Yokota, K., Yoshiya, M., Umeda, J., Kondoh, K., First-principles design and experimental validation of β-Ti alloys with high solid-solution strengthening and low elasticities, Mater. Sci. Eng. A, 2022, 843: 143053
- Wang, Z.P., Fang, Q.H., Li, J., Liu, B., First-principles predictions of structural, mechanical and electronic properties of βTiNb under high pressure, Superlattices Microstruct., 2018, 116: 141–150
- Jiang, D.Y., Ouyang, C.Y., Liu, S.Q., Mechanical properties of W–Ti alloys from first-principles calculations, Fusion Eng. Des., 2016, 106: 34–39
- Wu, Z., Malmir, H., Benafan, O., Lawson, J.W., Predicting the martensitic transition temperatures in ternary shape memory alloys Ni0.5Ti0.5− xHfx from first principles, Acta Mater., 2023, 261: 119362
- Mutlu, I., Ekinci, S., Oktay, E., Characterization of heat treated titanium-based implants by nondestructive eddy current and ultrasonic tests, J. Mater. Eng. Perform., 2014, 238(6): 2083–2091
- German, R., Bose, M.A., Injection molding of metals and ceramics, metal powder industries federation, Vol. 105, College Road East Princeton, New Jersey, 1997
- Chen, J., Zhou, X., Wang, W., Liu, B., Lv, Y., Yang, W., et al., A review on fundamental of high entropy alloys with promising high temperature properties, J. Alloy. Compd., 2018, 760: 15e30
- Antonov, S., Detrois, M., Tin, S., Design of novel precipitate-strengthened Al-Co-Cr-Fe-Nb-Ni high-entropy superalloys, Metall. Mater. Trans. A, 2018, 49A: 305
- He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., et al., A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 2016, 102: 187–196
- Eißmann, N., Mühle, U., Gaitzsch, U., Walther, G., Weißgärber, T., Kieback, B., Precipitation hardening of high entropy alloy CoCrFeMnNi containing titanium, J. Alloy. Compd., 2021, 857: 157610
- https://www.metal.com/
- https://www.lme.com/