Have a personal or library account? Click to login
Experimental and first-principles investigation of high entropy superalloys produced by powder injection moulding method Cover

Experimental and first-principles investigation of high entropy superalloys produced by powder injection moulding method

Open Access
|Dec 2025

References

  1. Chen, Y.T., Chang, Y.J., Murakami, H., Gorsse, S., Yeh, A.C., Designing high entropy superalloys for elevated temperature application, Scr. Mater., 2020, 187: 177–182
  2. Whitfield, T.E., Stone, H.J., Jones, C.N., Jones, N.G., Microstructural degradation of the AlMo0.5NbTa0.5TiZr refractory metal high-entropy superalloy at elevated temperatures, Entropy, 2021, 23(1): 80
  3. Yang, J.J., Kuo, C.M., Lin, P.T., Liu, H.C., Huang, C.Y., Yen, H.W., et al., Improvement in oxidation behavior of Al0.2Co1.5CrFeNi1.5Ti0.3 high-entropy superalloys by minor Nb addition, J. Alloy. Compd., 2020, 825: 15398
  4. Senkov, O.N., Jensenb, J.K., Pilchaka, A.L., Miracle, D.B., Fraser, H.L., Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0. 5TiZr, Mater. Des., 2018, 139: 498–511
  5. Shafiee, A., Moon, J., Kim, H.S., Jahazi, M., Nili-Ahmadabadi, M., Precipitation behaviour and mechanical properties of a new wrought high entropy superalloy, Mater. Sci. Eng. A, 2019, 749: 271–280
  6. Yurchenko, N., Panina, E., Rogal, Ł., Shekhawat, L., Zherebtsov, S., Stepanov, N., Unique precipitations in a novel refractory Nb-Mo-Ti-Co high-entropy superalloy, Mater. Res. Lett., 2022, 10(2): 78–87
  7. Cai, Y., Liu, F., Tan, Y., Wang, L., Ji, X., Xiang, S., Synergy effect of multi-strengthening mechanisms in CoNiCr-based high-entropy superalloy at cryogenic temperature, Mater. Sci. Eng. A, 2024, 901: 146531
  8. Li, Y., Olejarz, A., Kurpaska, Ł., Lu, E., Alava, M.J., Kim, H.S., et al., Designing cobalt-free face-centered cubic high-entropy alloys: A strategy using d-orbital energy level, Int. J. Refract. Met. Hard Mater., 2024, 124: 106834
  9. Chen, R., Qin, G., Zheng, H., Wang, L., Su, Y., Chiu, Y., et al., Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility, Acta Mater., 2018, 144: 129e137
  10. Momeni, V., Hufnagl, M., Shahroodi, Z., Gonzalez-Gutierrez, J., Schuschnigg, S., Kukla, C., et al., Research progress on low-pressure powder injection molding, Materials, 2023, 16: 379
  11. Dehghan-Manshadi, A., Yu, P., Dargusch, M., StJohn, D., Qian, M., Metal injection moulding of surgical tools, biomaterials and medical devices: A review, Powder Technol., 2020, 364: 189–204
  12. Aslam, M., Ahmad, F., Binti, P.S.M., Yusoff, M., Altafa, K., Omar, M.A., et al., Powder injection molding of biocompatible stainless steel biodevices, Powder Technol., 2016, 295: 84–95
  13. Won Lee, D., Shin, D.S., Ha, H., Park, S.J., Lee, K.A., Kim, H.S., Modulated heating rate effect on optimizing sintered density and microstructure in CoCrFeMnNi high-entropy alloy fabricated through metal injection molding, Mater. Charact., 2024, 214: 114037
  14. Meza, A., Barbosa, A., Tabares, E., Torralba, J.M., Tailoring high-entropy alloys via commodity powders for metal injection moulding: A feasibility study, J. Mater. Res. Technol., 2024, 31: 109–116
  15. Kang, B., Kong, T., Ryu, H.J., Hong, S.H., The outstanding tensile strength of Ni-rich high entropy superalloy fabricated by powder metallurgical process, Mater. Chem. Phys., 2019, 235: 121749
  16. Suryanarayana, C., Mechanical alloying and milling, Prog. Mater. Sci., 2001, 46(1): 184
  17. Suryanarayana, C., Mechanical alloying: A critical review, Mater. Res. Lett., 2022, 10(10): 619–647
  18. Miracle, D.B., Senkov, O.N., A critical review of high entropy alloys and related concepts, Acta Mater., 2017, 122: 448–511
  19. Cantor, B., Multicomponent high-entropy Cantor alloys, Prog. Mater. Sci., 2021, 120: 100754
  20. Segall, M.D., Lindan, P.J., Probert, M.A., Pickard, C.J., Hasnip, P.J., Clark, S.J., et al., First-principles simulation: ideas, illustrations and the CASTEPcode, J. Phys. Cond. Matter., 2002, 14: 2717–2744
  21. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I., Refson, K., et al., First principles methods using CASTEP, Z. Kristallogr.-Cryst. Mater., 2005, 220: 567–570
  22. Chen, H.L., Lin, L., Mao, P.L., Liu, Z., Phase stability, electronic, elastic and thermodynamic properties of Al-RE intermetallics in Mg-Al-RE alloy: A first principles study, J. Magnes. Alloy., 2015, 3: 197–202
  23. Sahara, R., Emura, S., Tsuchiya, K., Theoretical investigation of effect of alloying elements on phase stability in body-centered cubic Ti-X alloys (X= V, Cr, Fe, Co, Nb, and Mo), J. Alloy. Compd., 2015, 634: 193–199
  24. Mao, P., Yu, B., Liu, Z., Wang, F., Ju, Y., First-principles calculations of structural, elastic and electronic properties of AB2 type intermetallics in Mg–Zn–Ca–Cu alloy, J. Magnes. Alloy., 2013, 1: 256–262
  25. Lozynskyi, V., Trembach, B., Hossain, M.M., Kabir, M.H., Silchenko, Y., Krbata, M., et al., Prediction of phase composition and mechanical properties Fe–Cr–C–B–Ti–Cu hardfacing alloys: Modeling and experimental Validations, Heliyon, 2024, 10: e25199
  26. Shitara, K., Yokota, K., Yoshiya, M., Umeda, J., Kondoh, K., First-principles design and experimental validation of β-Ti alloys with high solid-solution strengthening and low elasticities, Mater. Sci. Eng. A, 2022, 843: 143053
  27. Wang, Z.P., Fang, Q.H., Li, J., Liu, B., First-principles predictions of structural, mechanical and electronic properties of βTiNb under high pressure, Superlattices Microstruct., 2018, 116: 141–150
  28. Jiang, D.Y., Ouyang, C.Y., Liu, S.Q., Mechanical properties of W–Ti alloys from first-principles calculations, Fusion Eng. Des., 2016, 106: 34–39
  29. Wu, Z., Malmir, H., Benafan, O., Lawson, J.W., Predicting the martensitic transition temperatures in ternary shape memory alloys Ni0.5Ti0.5− xHfx from first principles, Acta Mater., 2023, 261: 119362
  30. Mutlu, I., Ekinci, S., Oktay, E., Characterization of heat treated titanium-based implants by nondestructive eddy current and ultrasonic tests, J. Mater. Eng. Perform., 2014, 238(6): 2083–2091
  31. German, R., Bose, M.A., Injection molding of metals and ceramics, metal powder industries federation, Vol. 105, College Road East Princeton, New Jersey, 1997
  32. Chen, J., Zhou, X., Wang, W., Liu, B., Lv, Y., Yang, W., et al., A review on fundamental of high entropy alloys with promising high temperature properties, J. Alloy. Compd., 2018, 760: 15e30
  33. Antonov, S., Detrois, M., Tin, S., Design of novel precipitate-strengthened Al-Co-Cr-Fe-Nb-Ni high-entropy superalloys, Metall. Mater. Trans. A, 2018, 49A: 305
  34. He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., et al., A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 2016, 102: 187–196
  35. Eißmann, N., Mühle, U., Gaitzsch, U., Walther, G., Weißgärber, T., Kieback, B., Precipitation hardening of high entropy alloy CoCrFeMnNi containing titanium, J. Alloy. Compd., 2021, 857: 157610
  36. https://www.metal.com/
  37. https://www.lme.com/
DOI: https://doi.org/10.2478/msp-2025-0046 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 134 - 150
Submitted on: Jun 5, 2025
|
Accepted on: Dec 16, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Emre Atakan Meric, Berke Soy, Ilven Mutlu, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.