Have a personal or library account? Click to login
Process optimization of rice husk-based activated carbon production for water vapor adsorption Cover

Process optimization of rice husk-based activated carbon production for water vapor adsorption

Open Access
|Dec 2025

References

  1. Amani, M., Foroushani, S., Sultan, M., Bahrami, M., Comprehensive review on dehumidification strategies for agricultural greenhouse applications, Appl. Therm. Eng., 2020 Nov [cited 2023 Nov 22], 181: 115979. Available from: https://linkinghub.elsevier.com/retrieve/pii/S135943112033461X
  2. Djaeni, M., A’yuni, D.Q., Alhanif, M., Hii, C.L., Kumoro, A.C., Air dehumidification with advance adsorptive materials for food drying: A critical assessment for future prospective, Dry. Technol., 2021, 39(11): 1648–1666. Available from: https://www.tandfonline.com/doi/abs/10.1080/07373937.2021.1885042
  3. Chen, X., Riffat, S., Bai, H., Zheng, X., Reay, D., Recent progress in liquid desiccant dehumidification and air-conditioning: A review, Energy Built Environ., 2020 Jan, 1(1): 106–130
  4. Naik, B.K., Joshi, M., Muthukumar, P., Sultan, M., Miyazaki, T., Shamshiri, R.R., et al., Investigating solid and liquid desiccant dehumidification options for room air-conditioning and drying applications, Sustainability, 2020 Dec 17 [cited 2023 Nov 22], 12(24): 10582. Available from: https://www.mdpi.com/2071-1050/12/24/10582
  5. Miksik, F., Miyazaki, T., Thu, K., Miyawaki, J., Nakabayashi, K., Wijayanta, A.T., et al., Development of biomass based-activated carbon for adsorption dehumidification, Energy Rep., 2021 Nov [cited 2024 Jan 18], 7: 5871–5884. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352484721008088
  6. Djaeni, M., Perdanianti, A.M., The study explores the effect of onion (allium cepa l.) drying using hot air dehumidified by activated carbon, silica gel and zeolite, J. Phys.: Conf. Ser., 2019 Sept 1 [cited 2023 Nov 24], 1295(1): 012025. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1295/1/012025
  7. Sasongko, S.B., Hadiyanto, H., Djaeni, M., Perdanianti, A.M., Utari, F.D., Effects of drying temperature and relative humidity on the quality of dried onion slice, Heliyon, 2020 July [cited 2023 Nov 24], 6(7): e04338. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405844020311828
  8. Luthra, K., Sadaka, S., Effects of air dehumidification on the performance of a fluidized bed dryer and the rice quality, In: 2019 Boston, Massachusetts July 7- July 10, 2019 [Internet], American Society of Agricultural and Biological Engineers, 2019 [cited 2023 Nov 24]. Available from: http://elibrary.asabe.org/abstract.asp?JID=5&AID=50283&CID=bos2019&T=1
  9. Jatmiko, T.H., Suwanto, A., Sholahuddin, M., Optimization of activated carbon production from cajuput biomass as a desiccant, IOP Conf. Ser: Earth Env. Sci., 2024 July 1 [cited 2025 Jan 3], 1377(1): 012019. Available from: https://iopscience.iop.org/article/10.1088/1755-1315/1377/1/012019
  10. A’yuni, D.Q., Hadiantono, H., Velny, V., Subagio, A., Djaeni, M., Mufti, N., Effect of Potassium Hydroxide Concentration and Activation Time on Rice Husk-Activated Carbon for Water Vapor Adsorption, Iran. J. Mater. Sci. Eng., 2024 [cited 2024 July 8], 21(3): 1–10. Available from: http://ijmse.iust.ac.ir/article-1-3522-en.html
  11. Yu, H., Mikšík, F., Thu, K., Miyazaki, T., Characterization and optimization of pore structure and water adsorption capacity in pinecone-derived activated carbon by steam activation, Powder Technol., 2024 Jan [cited 2025 Jan 3], 431: 119084. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0032591023008677
  12. Li, M., Wang, Y., Liu, Y., Wang, H., Song, H., Preparation of active carbon through one-step NaOH activation of coconut shell biomass for phenolic wastewater treatment, Res. Chem. Intermed., 2022 Apr 1 [cited 2025 Dec 2], 48(4): 1665–1684. Available from: 10.1007/s11164-021-04650-0
  13. Zhao, H., Yu, Q., Li, M., Sun, S., Preparation and water vapor adsorption of “green” walnut-shell activated carbon by CO2 physical activation, Adsorption Sci. Technol., 2020 Mar [cited 2023 Nov 24], 38(1–2): 60–76. Available from: http://journals.sagepub.com/doi/10.1177/0263617419900849
  14. Raut, E.R., Bedmohata, M.A., Chaudhari, A.R., Comparative study of preparation and characterization of activated carbon obtained from sugarcane bagasse and rice husk by using H3PO4 and ZnCl2, Mater. Today: Proc., 2022 Jan 1 [cited 2025 Dec 2], 66: 1875–1884. Available from: https://www.sciencedirect.com/science/article/pii/S2214785322037324
  15. Araque, O., Arzola, N., Cerón, I.X., Microstructure and mechanical characterization of rice husks from the Tolima Region of Colombia, Resources, 2024 Jan [cited 2025 Nov 27], 13(1): 16. Available from: https://www.mdpi.com/2079-9276/13/1/16
  16. Badan Pusat Statistik. Luas Panen dan Produksi Padi di Indonesia 2024 [Internet]. Indonesia: Badan Pusat Statistik; 2025 Feb [cited 2025 Nov 27]. (Berita Resmi Statistik). Report No.: 15/02/Th. XXVIII. Available from: https://www.bps.go.id/id/pressrelease/2025/02/03/2414/pada-2024--luas-panen-padi-mencapai-sekitar-10-05-juta-hektare-dengan-produksi-padi-sebanyak-53-14-juta-ton-gabah-kering-giling--gkg--.html
  17. Bai, W., Qian, M., Li, Q., Atkinson, S., Tang, B., Zhu, Y., et al., Rice husk-based adsorbents for removing ammonia: Kinetics, thermodynamics and adsorption mechanism, J. Environ. Chem. Eng., 2021 Aug 1 [cited 2025 Dec 2], 9(4): 105793. Available from: https://www.sciencedirect.com/science/article/pii/S2213343721007703
  18. Romero-Hernandez, J.J., Paredes-Laverde, M., Silva-Agredo, J., Mercado, D.F., Ávila-Torres, Y., Torres-Palma, R.A., Pharmaceutical adsorption on NaOH-treated rice husk-based activated carbons: Kinetics, thermodynamics, and mechanisms, J. Clean. Prod., 2024 Jan [cited 2025 Jan 3], 434: 139935. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0959652623040933
  19. Muniandy, L., Adam, F., Mohamed, A.R., Ng, E.P., The synthesis and characterization of high purity mixed microporous/ mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH, Microporous Mesoporous Mater., 2014, 197: 316–323. Available from: 10.1016/j.micromeso.2014.06.020
  20. Saputra, D.A., Pratoto, A., Rahman, M.F., Kodama, A., The effect of chemical activation agents and activation temperature on the pore structure of rice husk-derived activated carbon, Malaysian J. Sci., 2024 July 31 [cited 2025 Jan 6], 43(Sp1): 1–7. Available from: https://mjs.um.edu.my/index.php/MJS/article/view/49963
  21. Bari, M.N., Muna F.Y., Rahnuma, M., Hossain M.I., Production of activated carbon from rice husk and its proximate analysis, J. Eng. Sci., 2025 Aug 6 [cited 2025 Nov 24], 13(1): 105–112. Available from: https://www.researchgate.net/publication/361775641_Production_of_Activated_Carbon_From_Rice_Husk_and_Its_Proximate_Analysis
  22. Yerdauletov, M.S., Nazarov, K., Mukhametuly, B., Yeleuov, M.A., Daulbayev, C., Abdulkarimova, R., et al., Characterization of activated carbon from rice husk for enhanced energy storage devices, Molecules, 2023 Aug 2 [cited 2025 Nov 24], 28(15): 5818. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10421275/
  23. Yefremova, S., Kablanbekov, A., Satbaev, B., Zharmenov, A., Rice husk-based adsorbents for removal of metals from aqueous solutions, Materials, 2023 [cited 2025 Nov 24], 16(23): 7353. Available from: https://www.mdpi.com/1996-1944/16/23/7353
  24. Gargiulo, N., Peluso, A., Caputo, D., MOF-based adsorbents for atmospheric emission control: A review, Processes, 2020 May 21 [cited 2024 Jan 18], 8(5): 613. Available from: https://www.mdpi.com/2227-9717/8/5/613
  25. Bouider, B., Rida, K., Adsorption of Rhodamine B, methyl Orange, and phenol separately in aqueous systems by magnetic activated carbon: Optimization by central composite design, Mater. Sci. Eng.: B, 2024 Sept [cited 2025 Jan 9], 307: 117502. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0921510724003313
  26. Chu, K.H., Hashim, M.A., Zawawi, M.H., Bollinger, J.C., The Weber–Morris model in water contaminant adsorption: Shattering long-standing misconceptions, J. Environ. Chem. Eng., 2025 Aug [cited 2025 Nov 30], 13(4): 117266. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213343725019621
  27. Putro, J.N., Ju, Y.H., Soetaredjo, F.E., Santoso, S.P., Ismadji, S., Biosorption of dyes. In: Sharma SK, editor., Green Chemistry and Water Remediation: Research and Applications, Elsevier, 2021. p. 99–133
  28. Wang, J., Guo, X., Adsorption kinetics and isotherm models of heavy metals by various adsorbents: An overview. Crit. Rev. Environ. Sci. Technol., 2023 Nov 2 [cited 2025 Nov 28], 53(21): 1837–1865. Available from: https://www.tandfonline.com/doi/full/10.1080/10643389.2023.2221157
  29. Luthra, K., Shafiekhani, S., Sadaka, S.S., Atungulu, G.G., Determination of moisture sorption isotherms of rice and husk flour composites, Appl. Eng. Agric., 2020 [cited 2025 Nov 28], 36(6): 859–867. Available from: 10.13031/aea.13822
  30. Remington, C., Bourgault, C., Dorea, CC., Measurement and modelling of moisture sorption isotherm and heat of sorption of fresh feces, Water, 2020 Feb [cited 2025 Nov 28], 12(2): 323. Available from: https://www.mdpi.com/2073-4441/12/2/323
  31. Mittal, H., Al Alili, A., Alhassan, S.M., Adsorption isotherm and kinetics of water vapors on novel superporous hydrogel composites, Microporous Mesoporous Mater., 2020 June 1 [cited 2024 Mar 19], 299: 110106. Available from: https://www.sciencedirect.com/science/article/pii/S1387181120301098
  32. Wang, J., Guo, X., Adsorption kinetic models: Physical meanings, applications, and solving methods, J. Hazard. Mater., 2020 May, 390: 122156
  33. Peleg, M., Models of sigmoid equilibrium moisture sorption isotherms with and without the monolayer hypothesis, Food Eng. Rev., 2020, 12: 1–13. Available from: 10.1007/s12393-019-09207-x
  34. Alyousef, H., Yahia, M.B., Aouaini, F., Statistical physics modeling of water vapor adsorption isotherm into kernels of dates: Experiments, microscopic interpretation and thermodynamic functions evaluation, Arab. J. Chem., 2020, 13: 4691–4702. Available from: 10.1016/j.arabjc.2019.11.004
  35. Ramirez-Gutierrez, C.F., Arias-Niquepa, R., Prías-Barragán, J.J., Rodriguez-Garcia, M.E., Study and identification of contaminant phases in commercial activated carbons, J. Environ. Chem. Eng., 2020, 8: 103636
  36. Nandi, R., Jha, M.K., Guchhait, S.K., Sutradhar, D., Yadav, S., Impact of KOH activation on rice husk derived porous activated carbon for carbon capture at flue gas alike temperatures with high CO2/N2 selectivity, ACS Omega, 2023, 8: 4802–4812. Available from: 10.1021/acsomega.2c06955
  37. Liu, Z., Sun, Y., Xu, X., Qu, J., Qu, B., Adsorption of Hg(ii) in an aqueous solution by activated carbon prepared from rice husk using KOH activation, ACS Omega, 2020 Nov 17 [cited 2024 Jan 19], 5(45): 29231–29242. Available from: https://pubs.acs.org/doi/10.1021/acsomega.0c03992
  38. He, S., Chen, G., Xiao, H., Shi, G., Ruan, C., Ma, Y., et al., Facile preparation of N-doped activated carbon produced from rice husk for CO2 capture, J. Colloid Interface Sci., 2021 Jan [cited 2024 Jan 22], 582: 90–101. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979720310638
  39. Saad, M.J., Hua, C.C., Misran, S., Zakaria, S., Sajab, S., Hariz, M., et al. Rice husk activated carbon with NaOH activation: Physical and chemical properties, Sains Malaysiana, 2020, 49(9): 2261–2267. Available from: 10.17576/jsm-2020-4909-23
  40. A’yuni, D.Q., Subagio, A., Hadiyanto, H., Kumoro, A.C., Djaeni, M., Microstructure silica leached by NaOH from semi-burned rice husk ash for moisture adsorbent, Arch. Mater. Sci. Eng., 2021 Mar 1 [cited 2024 Jan 18], 1(108): 5–15. Available from: https://archivesmse.org/gicid/01.3001.0015.0248
  41. Motlagh, E.K., Sharifian, S., Asasian-Kolur, N., Alkaline activating agents for activation of rice husk biochar and simultaneous bio-silica extraction, Bioresour. Technol. Rep., 2021, 16: 2589–2603. Available from: 10.1016/j.biteb.2021.100853
  42. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 2015 Oct 1 [cited 2024 Mar 7], 87(9–10): 1051–1069. Available from: https://www.degruyter.com/document/doi/10.1515/pac-2014-1117/html
  43. Chen, C., Salinger, J.L., Essig, M.E., Walton, I.M., Fulvio, P.F., Walton, K.S., Hierarchical silica composites for enhanced water adsorption at low humidity, ACS Appl. Mater. Interfaces, 2024 July 31 [cited 2025 Jan 21], 16(30): 40275–40285. Available from: https://pubs.acs.org/doi/10.1021/acsami.4c09456
  44. Xie, W., Wang, H., Chen, S., Gan, H., Vandeginste, V., Wang, M., Water adsorption and its pore structure dependence in shale gas reservoirs, Langmuir, 2023 Aug 1 [cited 2025 Jan 21], 39(30): 10576–10592. Available from: 10.1021/acs.langmuir.3c01159
  45. Saad, M.J., Sajab, M.S., Wan Busu, W.N., Misran, S., Zakaria, S., Chin, S.X., et al., Comparative adsorption mechanism of rice straw activated carbon activated with NaOH and KOH, JSM, 2020 Nov 30 [cited 2024 Mar 9], 49(11): 2721–2734. Available from: http://www.ukm.edu.my/jsm/pdf_files/SM-PDF-49-11-2020/11.pdf
  46. Wang, S., Lee, Y.R., Won, Y., Kim, H., Jeong, S.E., Wook Hwang, B., et al., Development of high-performance adsorbent using KOH-impregnated rice husk-based activated carbon for indoor CO2 adsorption, Chem. Eng. J., 2022 June 1 [cited 2024 Jan 18], 437: 135378. Available from: https://www.sciencedirect.com/science/article/pii/S1385894722008816
  47. Phothong, K., Tangsathitkulchai, C., Lawtae, P., The analysis of pore development and formation of surface functional groups in bamboo-based activated carbon during CO2 activation, Molecules, 2021 Sept 17 [cited 2025 Dec 3], 26(18): 5641. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8469776/
  48. Thang, N.H., Khang, D.S., Hai, T.D., Nga, D.T., Tuan, P.D., Methylene blue adsorption mechanism of activated carbon synthesised from cashew nut shells, RSC Adv., 2021 Aug 2 [cited 2023 Nov 27], 11(43): 26563–26570. Available from: https://pubs.rsc.org/en/content/articlelanding/2021/ra/d1ra04672a
  49. Amran, F., Zaini, M.A.A., Effects of chemical activating agents on physical properties of activated carbons – a commentary, Water Pract. Technol., 2020 Dec 1 [cited 2023 Nov 27], 15(4): 863–876. Available from: https://iwaponline.com/wpt/article/15/4/863/77700/Effects-of-chemical-activating-agents-on-physical
  50. Fontana Jr, A.J., Appendix B: Water activity of unsaturated salt solutions at 25°C. In: Water Activity in Foods, John Wiley & Sons, Ltd, 2007 [cited 2024 Mar 16], p. 395–397. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470376454.app2
  51. Mittal, H., Alili, A.A., Alhassan, S.M., Hybrid super-porous hydrogel composites with high water vapor adsorption capacity – Adsorption isotherm and kinetics studies, J. Environ. Chem. Eng., 2021 Dec 1 [cited 2024 Mar 10], 9(6): 106611. Available from: https://www.sciencedirect.com/science/article/pii/S2213343721015888
  52. Wang, C., Yang, B., Ji, X., Zhang, R., Wu, H., Study on activated carbon/silica gel/lithium chloride composite desiccant for solid dehumidification, Energy, 2022 July 15 [cited 2024 Jan 18], 251: 123874. Available from: https://www.sciencedirect.com/science/article/pii/S0360544222007770
  53. Mlonka-Mędrala, A., Hasan, T., Kalawa, W., Sowa, M., Sztekler, K., Pinto, M.L., et al., Possibilities of using zeolites synthesized from fly ash in adsorption chillers, Energies, 2022 Oct 10 [cited 2025 Nov 27], 15(19): 7444. Available from: https://www.mdpi.com/1996-1073/15/19/7444
  54. Hraiech, I., Zallama, B., Belkhiria, S., Zili-Ghedira, L., Maatki, C., Hassen, W., et al., Experimental characterization of silica gel adsorption and desorption isotherms under varying temperature and relative humidity in a fixed bed reactor, Sci. Rep., 2025 Aug 8 [cited 2025 Nov 27], 15(1): 29041. Available from: https://www.nature.com/articles/s41598-025-14677-7
  55. Chulliyil, H.M., Hamdani, I.R., Ahmad, A., Al Shoaibi, A., Chandrasekar, S., Enhanced moisture adsorption of activated carbon through surface modification, Results Surf. Interfaces, 2024 Feb [cited 2025 Nov 27], 14: 100170. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666845923000776
  56. Mikšík, F., Miyazaki, T., Thu, K., Miyawaki, J., Nakabayashi, K., Wijayanta, A.T., et al., Enhancing water adsorption capacity of acorn nutshell based activated carbon for adsorption thermal energy storage application, Energy Rep., 2020 Dec 1 [cited 2025 Mar 30], 6: 255–263. Available from: https://www.sciencedirect.com/science/article/pii/S2352484720314633
  57. Liang, Q., Liu, Y., Chen, M., Ma, L., Yang, B., Li, L., et al., Optimized preparation of activated carbon from coconut shell and municipal sludge, Mater. Chem. Phys., 2020 Feb [cited 2024 Jan 22], 241: 122327. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0254058419311423
  58. Yue, Y., Adhab, A.H., Sur, D., Menon, S.V., Singh, A., Supriya, S., et al., Thermodynamic modeling adsorption behavior of a well-known gelation crosslinker on sandstone rocks, Sci. Rep., 2025 July 2 [cited 2025 Dec 4], 15(1): 22544. Available from: https://www.nature.com/articles/s41598-025-06005-w
  59. Al-Janabi, N., Martis, V., Servi, N., Siperstein, F.R., Fan, X., Cyclic adsorption of water vapour on CuBTC MOF: Sustaining the hydrothermal stability under non-equilibrium conditions, Chem. Eng. J., 2018 Feb [cited 2025 Dec 4], 333: 594–602. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1385894717317047
  60. Wöllner, M., Klein, N., Kaskel, S., Measuring water adsorption processes of metal-organic frameworks for heat pump applications via optical calorimetry, Microporous Mesoporous Mater., 2019 Apr [cited 2025 Dec 4], 278: 206–211. Available from: https://linkinghub.elsevier.com/retrieve/pii/S138718111830595X
  61. Dabbawala, A.A., Suresh Kumar Reddy, K., Mittal, H., Al Wahedi, Y., Vaithilingam, B.V., Karanikolos, G.N., et al., Water vapor adsorption on metal-exchanged hierarchical porous zeolite-Y, Microporous Mesoporous Mater., 2021 Oct [cited 2025 Dec 4], 326: 111380. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1387181121005060
  62. Montalvo-Andía, J., Reátegui-Romero, W., Peña-Contreras, A.D., Zaldivar Alvarez, W.F., King-Santos, M.E., Fernández-Guzmán, V., et al., Adsorption of Cd(ii) using chemically modified rice husk: characterization, equilibrium, and kinetic studies, Adsorption Sci. Technol., 2022 Jan 1 [cited 2025 Dec 2], 2022: 3688155. Available from: 10.1155/2022/3688155
  63. Wang, J., Guo, X., Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation, solving methods and applications, Chemosphere, 2022 Dec, 309: 136732
DOI: https://doi.org/10.2478/msp-2025-0044 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 198 - 220
Submitted on: Mar 10, 2025
|
Accepted on: Dec 21, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Dewi Qurrota A’yuni, Moh Djaeni, Nandang Mufti, Agus Subagio, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.