References
- Amani, M., Foroushani, S., Sultan, M., Bahrami, M., Comprehensive review on dehumidification strategies for agricultural greenhouse applications, Appl. Therm. Eng., 2020 Nov [cited 2023 Nov 22], 181: 115979. Available from: https://linkinghub.elsevier.com/retrieve/pii/S135943112033461X
- Djaeni, M., A’yuni, D.Q., Alhanif, M., Hii, C.L., Kumoro, A.C., Air dehumidification with advance adsorptive materials for food drying: A critical assessment for future prospective, Dry. Technol., 2021, 39(11): 1648–1666. Available from: https://www.tandfonline.com/doi/abs/10.1080/07373937.2021.1885042
- Chen, X., Riffat, S., Bai, H., Zheng, X., Reay, D., Recent progress in liquid desiccant dehumidification and air-conditioning: A review, Energy Built Environ., 2020 Jan, 1(1): 106–130
- Naik, B.K., Joshi, M., Muthukumar, P., Sultan, M., Miyazaki, T., Shamshiri, R.R., et al., Investigating solid and liquid desiccant dehumidification options for room air-conditioning and drying applications, Sustainability, 2020 Dec 17 [cited 2023 Nov 22], 12(24): 10582. Available from: https://www.mdpi.com/2071-1050/12/24/10582
- Miksik, F., Miyazaki, T., Thu, K., Miyawaki, J., Nakabayashi, K., Wijayanta, A.T., et al., Development of biomass based-activated carbon for adsorption dehumidification, Energy Rep., 2021 Nov [cited 2024 Jan 18], 7: 5871–5884. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352484721008088
- Djaeni, M., Perdanianti, A.M., The study explores the effect of onion (allium cepa l.) drying using hot air dehumidified by activated carbon, silica gel and zeolite, J. Phys.: Conf. Ser., 2019 Sept 1 [cited 2023 Nov 24], 1295(1): 012025. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1295/1/012025
- Sasongko, S.B., Hadiyanto, H., Djaeni, M., Perdanianti, A.M., Utari, F.D., Effects of drying temperature and relative humidity on the quality of dried onion slice, Heliyon, 2020 July [cited 2023 Nov 24], 6(7): e04338. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405844020311828
- Luthra, K., Sadaka, S., Effects of air dehumidification on the performance of a fluidized bed dryer and the rice quality, In: 2019 Boston, Massachusetts July 7- July 10, 2019 [Internet], American Society of Agricultural and Biological Engineers, 2019 [cited 2023 Nov 24]. Available from: http://elibrary.asabe.org/abstract.asp?JID=5&AID=50283&CID=bos2019&T=1
- Jatmiko, T.H., Suwanto, A., Sholahuddin, M., Optimization of activated carbon production from cajuput biomass as a desiccant, IOP Conf. Ser: Earth Env. Sci., 2024 July 1 [cited 2025 Jan 3], 1377(1): 012019. Available from: https://iopscience.iop.org/article/10.1088/1755-1315/1377/1/012019
- A’yuni, D.Q., Hadiantono, H., Velny, V., Subagio, A., Djaeni, M., Mufti, N., Effect of Potassium Hydroxide Concentration and Activation Time on Rice Husk-Activated Carbon for Water Vapor Adsorption, Iran. J. Mater. Sci. Eng., 2024 [cited 2024 July 8], 21(3): 1–10. Available from: http://ijmse.iust.ac.ir/article-1-3522-en.html
- Yu, H., Mikšík, F., Thu, K., Miyazaki, T., Characterization and optimization of pore structure and water adsorption capacity in pinecone-derived activated carbon by steam activation, Powder Technol., 2024 Jan [cited 2025 Jan 3], 431: 119084. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0032591023008677
- Li, M., Wang, Y., Liu, Y., Wang, H., Song, H., Preparation of active carbon through one-step NaOH activation of coconut shell biomass for phenolic wastewater treatment, Res. Chem. Intermed., 2022 Apr 1 [cited 2025 Dec 2], 48(4): 1665–1684. Available from: 10.1007/s11164-021-04650-0
- Zhao, H., Yu, Q., Li, M., Sun, S., Preparation and water vapor adsorption of “green” walnut-shell activated carbon by CO2 physical activation, Adsorption Sci. Technol., 2020 Mar [cited 2023 Nov 24], 38(1–2): 60–76. Available from: http://journals.sagepub.com/doi/10.1177/0263617419900849
- Raut, E.R., Bedmohata, M.A., Chaudhari, A.R., Comparative study of preparation and characterization of activated carbon obtained from sugarcane bagasse and rice husk by using H3PO4 and ZnCl2, Mater. Today: Proc., 2022 Jan 1 [cited 2025 Dec 2], 66: 1875–1884. Available from: https://www.sciencedirect.com/science/article/pii/S2214785322037324
- Araque, O., Arzola, N., Cerón, I.X., Microstructure and mechanical characterization of rice husks from the Tolima Region of Colombia, Resources, 2024 Jan [cited 2025 Nov 27], 13(1): 16. Available from: https://www.mdpi.com/2079-9276/13/1/16
- Badan Pusat Statistik. Luas Panen dan Produksi Padi di Indonesia 2024 [Internet]. Indonesia: Badan Pusat Statistik; 2025 Feb [cited 2025 Nov 27]. (Berita Resmi Statistik). Report No.: 15/02/Th. XXVIII. Available from: https://www.bps.go.id/id/pressrelease/2025/02/03/2414/pada-2024--luas-panen-padi-mencapai-sekitar-10-05-juta-hektare-dengan-produksi-padi-sebanyak-53-14-juta-ton-gabah-kering-giling--gkg--.html
- Bai, W., Qian, M., Li, Q., Atkinson, S., Tang, B., Zhu, Y., et al., Rice husk-based adsorbents for removing ammonia: Kinetics, thermodynamics and adsorption mechanism, J. Environ. Chem. Eng., 2021 Aug 1 [cited 2025 Dec 2], 9(4): 105793. Available from: https://www.sciencedirect.com/science/article/pii/S2213343721007703
- Romero-Hernandez, J.J., Paredes-Laverde, M., Silva-Agredo, J., Mercado, D.F., Ávila-Torres, Y., Torres-Palma, R.A., Pharmaceutical adsorption on NaOH-treated rice husk-based activated carbons: Kinetics, thermodynamics, and mechanisms, J. Clean. Prod., 2024 Jan [cited 2025 Jan 3], 434: 139935. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0959652623040933
- Muniandy, L., Adam, F., Mohamed, A.R., Ng, E.P., The synthesis and characterization of high purity mixed microporous/ mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH, Microporous Mesoporous Mater., 2014, 197: 316–323. Available from: 10.1016/j.micromeso.2014.06.020
- Saputra, D.A., Pratoto, A., Rahman, M.F., Kodama, A., The effect of chemical activation agents and activation temperature on the pore structure of rice husk-derived activated carbon, Malaysian J. Sci., 2024 July 31 [cited 2025 Jan 6], 43(Sp1): 1–7. Available from: https://mjs.um.edu.my/index.php/MJS/article/view/49963
- Bari, M.N., Muna F.Y., Rahnuma, M., Hossain M.I., Production of activated carbon from rice husk and its proximate analysis, J. Eng. Sci., 2025 Aug 6 [cited 2025 Nov 24], 13(1): 105–112. Available from: https://www.researchgate.net/publication/361775641_Production_of_Activated_Carbon_From_Rice_Husk_and_Its_Proximate_Analysis
- Yerdauletov, M.S., Nazarov, K., Mukhametuly, B., Yeleuov, M.A., Daulbayev, C., Abdulkarimova, R., et al., Characterization of activated carbon from rice husk for enhanced energy storage devices, Molecules, 2023 Aug 2 [cited 2025 Nov 24], 28(15): 5818. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10421275/
- Yefremova, S., Kablanbekov, A., Satbaev, B., Zharmenov, A., Rice husk-based adsorbents for removal of metals from aqueous solutions, Materials, 2023 [cited 2025 Nov 24], 16(23): 7353. Available from: https://www.mdpi.com/1996-1944/16/23/7353
- Gargiulo, N., Peluso, A., Caputo, D., MOF-based adsorbents for atmospheric emission control: A review, Processes, 2020 May 21 [cited 2024 Jan 18], 8(5): 613. Available from: https://www.mdpi.com/2227-9717/8/5/613
- Bouider, B., Rida, K., Adsorption of Rhodamine B, methyl Orange, and phenol separately in aqueous systems by magnetic activated carbon: Optimization by central composite design, Mater. Sci. Eng.: B, 2024 Sept [cited 2025 Jan 9], 307: 117502. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0921510724003313
- Chu, K.H., Hashim, M.A., Zawawi, M.H., Bollinger, J.C., The Weber–Morris model in water contaminant adsorption: Shattering long-standing misconceptions, J. Environ. Chem. Eng., 2025 Aug [cited 2025 Nov 30], 13(4): 117266. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213343725019621
- Putro, J.N., Ju, Y.H., Soetaredjo, F.E., Santoso, S.P., Ismadji, S., Biosorption of dyes. In: Sharma SK, editor., Green Chemistry and Water Remediation: Research and Applications, Elsevier, 2021. p. 99–133
- Wang, J., Guo, X., Adsorption kinetics and isotherm models of heavy metals by various adsorbents: An overview. Crit. Rev. Environ. Sci. Technol., 2023 Nov 2 [cited 2025 Nov 28], 53(21): 1837–1865. Available from: https://www.tandfonline.com/doi/full/10.1080/10643389.2023.2221157
- Luthra, K., Shafiekhani, S., Sadaka, S.S., Atungulu, G.G., Determination of moisture sorption isotherms of rice and husk flour composites, Appl. Eng. Agric., 2020 [cited 2025 Nov 28], 36(6): 859–867. Available from: 10.13031/aea.13822
- Remington, C., Bourgault, C., Dorea, CC., Measurement and modelling of moisture sorption isotherm and heat of sorption of fresh feces, Water, 2020 Feb [cited 2025 Nov 28], 12(2): 323. Available from: https://www.mdpi.com/2073-4441/12/2/323
- Mittal, H., Al Alili, A., Alhassan, S.M., Adsorption isotherm and kinetics of water vapors on novel superporous hydrogel composites, Microporous Mesoporous Mater., 2020 June 1 [cited 2024 Mar 19], 299: 110106. Available from: https://www.sciencedirect.com/science/article/pii/S1387181120301098
- Wang, J., Guo, X., Adsorption kinetic models: Physical meanings, applications, and solving methods, J. Hazard. Mater., 2020 May, 390: 122156
- Peleg, M., Models of sigmoid equilibrium moisture sorption isotherms with and without the monolayer hypothesis, Food Eng. Rev., 2020, 12: 1–13. Available from: 10.1007/s12393-019-09207-x
- Alyousef, H., Yahia, M.B., Aouaini, F., Statistical physics modeling of water vapor adsorption isotherm into kernels of dates: Experiments, microscopic interpretation and thermodynamic functions evaluation, Arab. J. Chem., 2020, 13: 4691–4702. Available from: 10.1016/j.arabjc.2019.11.004
- Ramirez-Gutierrez, C.F., Arias-Niquepa, R., Prías-Barragán, J.J., Rodriguez-Garcia, M.E., Study and identification of contaminant phases in commercial activated carbons, J. Environ. Chem. Eng., 2020, 8: 103636
- Nandi, R., Jha, M.K., Guchhait, S.K., Sutradhar, D., Yadav, S., Impact of KOH activation on rice husk derived porous activated carbon for carbon capture at flue gas alike temperatures with high CO2/N2 selectivity, ACS Omega, 2023, 8: 4802–4812. Available from: 10.1021/acsomega.2c06955
- Liu, Z., Sun, Y., Xu, X., Qu, J., Qu, B., Adsorption of Hg(ii) in an aqueous solution by activated carbon prepared from rice husk using KOH activation, ACS Omega, 2020 Nov 17 [cited 2024 Jan 19], 5(45): 29231–29242. Available from: https://pubs.acs.org/doi/10.1021/acsomega.0c03992
- He, S., Chen, G., Xiao, H., Shi, G., Ruan, C., Ma, Y., et al., Facile preparation of N-doped activated carbon produced from rice husk for CO2 capture, J. Colloid Interface Sci., 2021 Jan [cited 2024 Jan 22], 582: 90–101. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979720310638
- Saad, M.J., Hua, C.C., Misran, S., Zakaria, S., Sajab, S., Hariz, M., et al. Rice husk activated carbon with NaOH activation: Physical and chemical properties, Sains Malaysiana, 2020, 49(9): 2261–2267. Available from: 10.17576/jsm-2020-4909-23
- A’yuni, D.Q., Subagio, A., Hadiyanto, H., Kumoro, A.C., Djaeni, M., Microstructure silica leached by NaOH from semi-burned rice husk ash for moisture adsorbent, Arch. Mater. Sci. Eng., 2021 Mar 1 [cited 2024 Jan 18], 1(108): 5–15. Available from: https://archivesmse.org/gicid/01.3001.0015.0248
- Motlagh, E.K., Sharifian, S., Asasian-Kolur, N., Alkaline activating agents for activation of rice husk biochar and simultaneous bio-silica extraction, Bioresour. Technol. Rep., 2021, 16: 2589–2603. Available from: 10.1016/j.biteb.2021.100853
- Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 2015 Oct 1 [cited 2024 Mar 7], 87(9–10): 1051–1069. Available from: https://www.degruyter.com/document/doi/10.1515/pac-2014-1117/html
- Chen, C., Salinger, J.L., Essig, M.E., Walton, I.M., Fulvio, P.F., Walton, K.S., Hierarchical silica composites for enhanced water adsorption at low humidity, ACS Appl. Mater. Interfaces, 2024 July 31 [cited 2025 Jan 21], 16(30): 40275–40285. Available from: https://pubs.acs.org/doi/10.1021/acsami.4c09456
- Xie, W., Wang, H., Chen, S., Gan, H., Vandeginste, V., Wang, M., Water adsorption and its pore structure dependence in shale gas reservoirs, Langmuir, 2023 Aug 1 [cited 2025 Jan 21], 39(30): 10576–10592. Available from: 10.1021/acs.langmuir.3c01159
- Saad, M.J., Sajab, M.S., Wan Busu, W.N., Misran, S., Zakaria, S., Chin, S.X., et al., Comparative adsorption mechanism of rice straw activated carbon activated with NaOH and KOH, JSM, 2020 Nov 30 [cited 2024 Mar 9], 49(11): 2721–2734. Available from: http://www.ukm.edu.my/jsm/pdf_files/SM-PDF-49-11-2020/11.pdf
- Wang, S., Lee, Y.R., Won, Y., Kim, H., Jeong, S.E., Wook Hwang, B., et al., Development of high-performance adsorbent using KOH-impregnated rice husk-based activated carbon for indoor CO2 adsorption, Chem. Eng. J., 2022 June 1 [cited 2024 Jan 18], 437: 135378. Available from: https://www.sciencedirect.com/science/article/pii/S1385894722008816
- Phothong, K., Tangsathitkulchai, C., Lawtae, P., The analysis of pore development and formation of surface functional groups in bamboo-based activated carbon during CO2 activation, Molecules, 2021 Sept 17 [cited 2025 Dec 3], 26(18): 5641. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8469776/
- Thang, N.H., Khang, D.S., Hai, T.D., Nga, D.T., Tuan, P.D., Methylene blue adsorption mechanism of activated carbon synthesised from cashew nut shells, RSC Adv., 2021 Aug 2 [cited 2023 Nov 27], 11(43): 26563–26570. Available from: https://pubs.rsc.org/en/content/articlelanding/2021/ra/d1ra04672a
- Amran, F., Zaini, M.A.A., Effects of chemical activating agents on physical properties of activated carbons – a commentary, Water Pract. Technol., 2020 Dec 1 [cited 2023 Nov 27], 15(4): 863–876. Available from: https://iwaponline.com/wpt/article/15/4/863/77700/Effects-of-chemical-activating-agents-on-physical
- Fontana Jr, A.J., Appendix B: Water activity of unsaturated salt solutions at 25°C. In: Water Activity in Foods, John Wiley & Sons, Ltd, 2007 [cited 2024 Mar 16], p. 395–397. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470376454.app2
- Mittal, H., Alili, A.A., Alhassan, S.M., Hybrid super-porous hydrogel composites with high water vapor adsorption capacity – Adsorption isotherm and kinetics studies, J. Environ. Chem. Eng., 2021 Dec 1 [cited 2024 Mar 10], 9(6): 106611. Available from: https://www.sciencedirect.com/science/article/pii/S2213343721015888
- Wang, C., Yang, B., Ji, X., Zhang, R., Wu, H., Study on activated carbon/silica gel/lithium chloride composite desiccant for solid dehumidification, Energy, 2022 July 15 [cited 2024 Jan 18], 251: 123874. Available from: https://www.sciencedirect.com/science/article/pii/S0360544222007770
- Mlonka-Mędrala, A., Hasan, T., Kalawa, W., Sowa, M., Sztekler, K., Pinto, M.L., et al., Possibilities of using zeolites synthesized from fly ash in adsorption chillers, Energies, 2022 Oct 10 [cited 2025 Nov 27], 15(19): 7444. Available from: https://www.mdpi.com/1996-1073/15/19/7444
- Hraiech, I., Zallama, B., Belkhiria, S., Zili-Ghedira, L., Maatki, C., Hassen, W., et al., Experimental characterization of silica gel adsorption and desorption isotherms under varying temperature and relative humidity in a fixed bed reactor, Sci. Rep., 2025 Aug 8 [cited 2025 Nov 27], 15(1): 29041. Available from: https://www.nature.com/articles/s41598-025-14677-7
- Chulliyil, H.M., Hamdani, I.R., Ahmad, A., Al Shoaibi, A., Chandrasekar, S., Enhanced moisture adsorption of activated carbon through surface modification, Results Surf. Interfaces, 2024 Feb [cited 2025 Nov 27], 14: 100170. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666845923000776
- Mikšík, F., Miyazaki, T., Thu, K., Miyawaki, J., Nakabayashi, K., Wijayanta, A.T., et al., Enhancing water adsorption capacity of acorn nutshell based activated carbon for adsorption thermal energy storage application, Energy Rep., 2020 Dec 1 [cited 2025 Mar 30], 6: 255–263. Available from: https://www.sciencedirect.com/science/article/pii/S2352484720314633
- Liang, Q., Liu, Y., Chen, M., Ma, L., Yang, B., Li, L., et al., Optimized preparation of activated carbon from coconut shell and municipal sludge, Mater. Chem. Phys., 2020 Feb [cited 2024 Jan 22], 241: 122327. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0254058419311423
- Yue, Y., Adhab, A.H., Sur, D., Menon, S.V., Singh, A., Supriya, S., et al., Thermodynamic modeling adsorption behavior of a well-known gelation crosslinker on sandstone rocks, Sci. Rep., 2025 July 2 [cited 2025 Dec 4], 15(1): 22544. Available from: https://www.nature.com/articles/s41598-025-06005-w
- Al-Janabi, N., Martis, V., Servi, N., Siperstein, F.R., Fan, X., Cyclic adsorption of water vapour on CuBTC MOF: Sustaining the hydrothermal stability under non-equilibrium conditions, Chem. Eng. J., 2018 Feb [cited 2025 Dec 4], 333: 594–602. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1385894717317047
- Wöllner, M., Klein, N., Kaskel, S., Measuring water adsorption processes of metal-organic frameworks for heat pump applications via optical calorimetry, Microporous Mesoporous Mater., 2019 Apr [cited 2025 Dec 4], 278: 206–211. Available from: https://linkinghub.elsevier.com/retrieve/pii/S138718111830595X
- Dabbawala, A.A., Suresh Kumar Reddy, K., Mittal, H., Al Wahedi, Y., Vaithilingam, B.V., Karanikolos, G.N., et al., Water vapor adsorption on metal-exchanged hierarchical porous zeolite-Y, Microporous Mesoporous Mater., 2021 Oct [cited 2025 Dec 4], 326: 111380. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1387181121005060
- Montalvo-Andía, J., Reátegui-Romero, W., Peña-Contreras, A.D., Zaldivar Alvarez, W.F., King-Santos, M.E., Fernández-Guzmán, V., et al., Adsorption of Cd(ii) using chemically modified rice husk: characterization, equilibrium, and kinetic studies, Adsorption Sci. Technol., 2022 Jan 1 [cited 2025 Dec 2], 2022: 3688155. Available from: 10.1155/2022/3688155
- Wang, J., Guo, X., Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation, solving methods and applications, Chemosphere, 2022 Dec, 309: 136732