Have a personal or library account? Click to login
Process optimization of rice husk-based activated carbon production for water vapor adsorption Cover

Process optimization of rice husk-based activated carbon production for water vapor adsorption

Open Access
|Dec 2025

Figures & Tables

Figure 1

Illustration of activated carbon preparation.
Illustration of activated carbon preparation.

Figure 2

Comparison between the predicted data (model) from RSM and experimental data for (a) KOH and (b) NaOH.
Comparison between the predicted data (model) from RSM and experimental data for (a) KOH and (b) NaOH.

Figure 3

3D surface plot of adsorption capacity of rice husk-based activated carbon prepared using (a) KOH and (b) NaOH.
3D surface plot of adsorption capacity of rice husk-based activated carbon prepared using (a) KOH and (b) NaOH.

Figure 4

SEM and EDX analysis of RHC (a and b), ACK (c and d), and ACNa (e and f).
SEM and EDX analysis of RHC (a and b), ACK (c and d), and ACNa (e and f).

Figure 5

(a) N2 adsorption–desorption and (b) pore size distribution of samples.
(a) N2 adsorption–desorption and (b) pore size distribution of samples.

Figure 6

Water vapor adsorption of activated carbon prepared using (a) KOH concentration of 15% w/v, (b) NaOH concentration of 15% w/v, (c) KOH activation for 8 h, and (d) NaOH activation for 8 h.
Water vapor adsorption of activated carbon prepared using (a) KOH concentration of 15% w/v, (b) NaOH concentration of 15% w/v, (c) KOH activation for 8 h, and (d) NaOH activation for 8 h.

Figure 7

Water vapor adsorption process on the surface of activated carbon.
Water vapor adsorption process on the surface of activated carbon.

Figure 8

Water vapor adsorption of rice husk and activated carbon at a water activity of (a) 0.7 and (b) 0.85.
Water vapor adsorption of rice husk and activated carbon at a water activity of (a) 0.7 and (b) 0.85.

Figure 9

Water vapor adsorption of (a) RHC and (b) ACNa at different temperatures.
Water vapor adsorption of (a) RHC and (b) ACNa at different temperatures.

Figure 10

(a) Water vapor adsorption of a single ACK at same condition and (b) water vapor desorption at different temperatures.
(a) Water vapor adsorption of a single ACK at same condition and (b) water vapor desorption at different temperatures.

Figure 11

Residual plots of different adsorption and diffusion models.
Residual plots of different adsorption and diffusion models.

Figure 12

Plotting between experimental data and modeled data of water vapor sorption isotherm of (a) RHC, (b) ACK, and (c) ACNa.
Plotting between experimental data and modeled data of water vapor sorption isotherm of (a) RHC, (b) ACK, and (c) ACNa.

Figure 13

Residual plots of several adsorption isotherm models.
Residual plots of several adsorption isotherm models.

Optimum conditions for preparing activated carbon from rice husk using activating agents of KOH and NaOH_

Activating agentConcentration (% w/v)Activation time (h)Adsorption capacity (g/g)Composite desirability
KOH22.0712.830.321
NaOH22.077.170.231

Parameters of Boyd’s external diffusion model of rice husk and activated carbons_

SampleParameter
k R R 2 SSE
KOH 15% w/v 7.17 h0.13210.02020.99941.1239 × 10−6
KOH 15% w/v 10.0 h0.12090.00100.91200.0001
KOH 15% w/v 12.83 h0.30714.138 × 10−5 0.88600.0013
KOH 7.93% w/v 8.00 h0.07640.01490.98776.682 × 10−6
KOH 10.00% w/v 8.00 h0.10270.01390.99812.006 × 10−6
KOH 20.00% w/v 8.00 h0.09540.00080.99851.488 × 10−6
NaOH 15% w/v 7.17 h0.16070.00240.88260.0006
NaOH 15% w/v 10.0 h0.13690.00020.76380.0007
NaOH 15% w/v 12.83 h0.13280.06890.99843.708 × 10−6
NaOH 7.93% w/v 8.00 h0.07640.01490.98776.682 × 10−6
NaOH 10.00% w/v 8.00 h0.11400.01150.97892.219 × 10−5
NaOH 20.00% w/v 8.00 h0.19280.00520.95460.0002
Relative humidity of 85%: RHC0.08830.02440.98806.290 × 10−6
Relative humidity of 85%: ACK0.17590.00490.96878.557 × 10−5
Relative humidity of 85%: ACNa0.10940.00720.97292.491 × 10−5
Relative humidity of 70%: RHC0.05460.01530.96368.438 × 10−6
Relative humidity of 70%: ACK0.08460.01860.99254.651 × 10−6
Relative humidity of 70%: ACNa0.07420.01000.95612.171 × 10−5
Average 0.9550 1.720 × 10 −4

Parameters of nonlinear pseudo-first-order model of rice husk and activated carbons_

SampleParameter
k q e R 2 SSE
KOH 15% w/v 7.17 h0.02020.13210.99941.124 × 10−6
KOH 15% w/v 10.0 h0.00070.11740.91849.947 × 10−5
KOH 15% w/v 12.83 h0.00010.30690.80590.0056
KOH 7.93% w/v 8.00 h0.01480.07650.98776.686 × 10−6
KOH 10.00% w/v 8.00 h0.01380.10270.99812.010 × 10−6
KOH 20.00% w/v 8.00 h0.00080.09540.99851.488 × 10−6
NaOH 15% w/v 7.17 h0.01430.15920.99922.195 × 10−6
NaOH 15% w/v 10.0 h0.00080.12230.94996.990 × 10−5
NaOH 15% w/v 12.83 h0.06880.13280.99843.708 × 10−6
NaOH 7.93% w/v 8.00 h0.01920.06430.98535.100 × 10−6
NaOH 10.00% w/v 8.00 h0..01120.11420.97912.234 × 10−5
NaOH 20.00% w/v 8.00 h0.00520.19280.95481.846 × 10−4
Relative humidity of 85%: RHC0.02470.09110.98801.346 × 10−5
Relative humidity of 85%: ACK0.00750.18430.91644.235 × 10−4
Relative humidity of 85%: ACNa0.00960.11370.95158.525 × 10−5
Relative humidity of 70%: RHC0.00800.05780.93102.306 × 10−5
Relative humidity of 70%: ACK0.01030.08640.96123.018 × 10−5
Relative humidity of 70%: ACNa0.01240.07750.95213.670 × 10−5
Average 0.9597 3.672 × 10 −4

Parameters of nonlinear pseudo-second-order model of rice husk and activated carbons_

SampleParameter
k q e R 2 SSE
KOH 15% w/v 7.17 h0.28840.13310.99983.208 × 10−7
KOH 15% w/v 10.0 h0.00970.12560.95695.180 × 10−4
KOH 15% w/v 12.83 h0.00010.43490.66300.0062
KOH 7.93% w/v 8.00 h0.34480.07990.99681.741 × 10−6
KOH 10.00% w/v 8.00 h0.26160.10690.98071.999 × 10−5
KOH 20.00% w/v 8.00 h0.11710.09530.99861.719 × 10−6
NaOH 15% w/v 7.17 h0.13830.16080.99991.154 × 10−7
NaOH 15% w/v 10.0 h0.00970.13090.87413.782 × 10−4
NaOH 15% w/v 12.83 h1.45910.13410.99902.322 × 10−6
NaOH 7.93% w/v 8.00 h0.59120.06670.99768.268 × 10−7
NaOH 10.00% w/v 8.00 h0.19340.11630.99782.215 × 10−6
NaOH 20.00% w/v 8.00 h0.04170.19760.97311.072 × 10−3
Relative humidity of 85%: RHC0.65700.09150.99947.453 × 10−7
Relative humidity of 85%: ACK0.03450.18680.99573.080 × 10−5
Relative humidity of 85%: ACNa0.09830.11510.99823.300 × 10−6
Relative humidity of 70%: RHC0.50950.05800.98587.410 × 10−6
Relative humidity of 70%: ACK0.57740.08650.99036.347 × 10−6
Relative humidity of 70%: ACNa0.13850.07800.98091.410 × 10−5
Average 0.9660 4.583 × 10 −4

Water vapor sorption isotherm models of rice husk and activated carbon_

Isotherm modelSampleParameters R 2 SSE
FreundlichRHC k F = 0.1397 n F = 0.38210.98610.0002
ACK k F = 0.3311 n F = 0.26060.98980.0005
ACNa k F = 0.2040 n F = 0.28880.95100.0008
LangmuirRHC m 0 = 0.0186 k L = 0.96800.91640.0005
ACK m 0 = 0.0412 k L = 0.94480.98070.0007
ACNa m 0 = 0.0372 k L = 0.88740.92260.0006
BETRHC m 0 = 0.0127 c B = 1.13260.91240.0009
ACK m 0 = 0.0305 c B = 0.97080.97000.0013
ACNa m 0 = 0.0208 c B = 1.02750.90790.0016
FHHRHC m 0 = 0.0124 r = 1.01290.89350.0007
ACK m 0 = 0.0330 r = 1.09210.96910.0007
ACNa m 0 = 0.0216 r = 1.07020.88480.0009

Comparison of the adsorption capacity by several desiccants_

DesiccantAdsorption capacity (g water/g desiccant)Reference
Synthesized zeolite 13X0.47[53]
Synthesized zeolite Na-A0.18[53]
Silica gel0.29–0.32[53,54]
Sulfuric acid-treated activated carbon0.36[55]
Nitric acid-treated activated carbon0.27[55]
Acorn nutshell-based activated carbon0.29[56]
Rice husk-based activated carbon0.27This research

Water vapor adsorption isotherm models in this research_

Isotherm modelFormulaParameters
Freundlich [31] q e = k f a w 1 / n f {q}_{\text{e}}={k}_{\text{f}}{{a}_{\text{w}}}^{1/{n}_{f}} k f = Freundlich constant
n f = adsorption intensity
Langmuir [32] 1 q e = 1 k L m 0 1 a w + 1 m 0 \frac{1}{{q}_{\text{e}}}=\frac{1}{{k}_{\text{L}}{m}_{0}}\frac{1}{{a}_{\text{w}}}+\frac{1}{{m}_{0}} k L = Langmuir constant
m 0 = monolayer adsorption
BET (Brunauer, Emmett, and Teller) [33] q e = m 0 c B a w ( 1 a w ) ( 1 a w + c B a w ) {q}_{\text{e}}=\frac{{m}_{0}{c}_{\text{B}}{a}_{\text{w}}}{(1-{a}_{\text{w}})(1-{a}_{\text{w}}+{c}_{\text{B}}{a}_{\text{w}})} c B = BET constant
FHH (Frenkel-Halsey-Hill) [31] q e = m 0 [ ln ( a w ) ] 1 / r {q}_{\text{e}}={m}_{0}{{[}-\text{ln}({a}_{\text{w}})]}^{-1/r} r = FHH constant

Adsorption models used in this research [27,28]_

Equation
Adsorption kinetics models Pseudo-first-order q t = q e ( 1 e k PFO t ) {q}_{\text{t}}={q}_{\text{e}}(1-{e}^{-{k}_{\text{PFO}}t})
Pseudo-second-order q t = q e 2 k PSO t q e k PSO t + 1 {q}_{\text{t}}=\frac{{q}_{\text{e}}^{2}{k}_{\text{PSO}}t}{{q}_{\text{e}}{k}_{\text{PSO}}t+1}
Diffusion models Boyd’s external diffusion q t = k B ( 1 e Rt ) {q}_{\text{t}}={k}_{\text{B}}(1-{e}^{-\text{Rt}})
Weber–Morris intraparticle diffusion q t = k WM t 1 / 2 + I {q}_{\text{t}}={k}_{\text{WM}}{t}^{1/2}+I

Parameters of Weber–Morris intraparticle diffusion model of rice husk and activated carbons_

Sample Parameter
k 1 k 2 k 3 R 2 SSE
I 1 I 2 I 3
KOH 15% w/v 7.17 h0.00280.000040.82290.0004
0.03150.12880
KOH 15% w/v 10.0 h0.00190.000400.97023.837 × 10−5
0.00460.07060
KOH 15% w/v 12.83 h0.00450.000100.002000.99373.618 × 10−5
0.00480.06910−0.11050
KOH 7.93% w/v 8.00 h0.00590.000450.000030.99821.036 × 10−6
0.00040.061840.07681
KOH 10.00% w/v 8.00 h0.00660.000010.98681.366 × 10−5
0.00420.10140
KOH 20.00% w/v 8.00 h0.00110.000100.96613.777 × 10−5
0.00550.08410
NaOH 15% w/v 7.17 h0.00350.000050.91040.0002
0.02860.15477
NaOH 15% w/v 10.0 h0.00200.000400.93020.0002
0.00370.07930
NaOH 15% w/v 12.83 h0.01870.000100.97964.716 × 10−5
0.00390.12340
NaOH 7.93% w/v 8.00 h0.00460.000250.000030.97458.860 × 10−6
0.00330.056260.06475
NaOH 10.00% w/v 8.00 h0.00640.000080.97063.129 × 10−5
0.00730.10640
NaOH 20.00% w/v 8.00 h0.01010.001860.000010.97030.0001
0.00130.089470.19304
Relative humidity of 85%: RHC0.00650.000220.000040.95452.386 × 10−5
0.00620.081470.08768
Relative humidity of 85%: ACK0.00780.001300.000100.98295.402 × 10−5
0.00310.111900.17451
Relative humidity of 85%: ACNa0.00530.000840.000080.98889.679 × 10−6
0.00520.077290.10614
Relative humidity of 70%: RHC0.00290.000060.96089.018 × 10−6
0.00480.05031
Relative humidity of 70%: ACK0.00420.000020.94733.261 × 10−5
0.00910.08393
Relative humidity of 70%: ACNa0.00400.000930.000020.97771.292 × 10−5
0.00320.046940.07457
Average 0.9603 6.980 × 10 −5

Chemical composition of RHC and activated carbon_

CompoundComposition (%)Reduction (%)Increase (%)
RHCACKACNaACKACNaACKACNa
SiO2 87.0092.7087.70 6.550.80
P2O5 2.202.703.80 22.7372.73
K2O4.520.670.8885.1880.53
CaO4.031.603.1660.3021.59
TiO2 0.070.260.34 271.43385.71
MnO0.530.160.3269.8139.62
Fe2O3 1.041.512.27 45.19118.27
NiO0.020.080.10 300.00400.00
CuO0.080.160.29 100.00262.50
ZnO0.03 0.19100.00 533.33
BaO0.10 0.20100.00 100.00
Yb2O3 0.06 0.20100.00 233.33
Re2O7 0.20 0.60100.00 200.00
Eu2O3 0.20

Representative samples for each activating agent_

Agent concentration (% w/v)Activation time (h)
15.007.17
10.00
12.83
7.938.00
10.00
20.00

CCD factors and response_

RunFactorResponse
Concentration (% w/v)Activation time (h)Adsorption capacity (g/g)
KOHNaOH
110.008.000.10270.0751
210.0012.000.08920.0751
315.007.170.13400.1607
415.0010.000.10500.1328
515.0010.000.15410.1338
615.0010.000.16020.0938
715.0010.000.16530.0947
815.0010.000.12830.0923
915.0012.830.21330.1347
1020.008.000.09760.1946
1120.0012.000.2693 h 0.0847 l
127.938.000.07940.0672
1322.0710.000.14390.1267

Analysis of variance of activated carbon water vapor adsorption from RSM_

SourceDFKOHNaOH
Adj SSAdj MS F-value P-valueAdj SSAdj MS F-value P-value
Model50.0310.00614.3500.001*0.0120.0024.8200.032**
Linear20.0250.01228.7900.000*0.0070.0047.3800.019*
X 1 10.0120.01227.6400.001*0.0040.0048.0200.025*
X 2 10.0100.01022.2500.002*0.0040.0048.7200.021*
Square20.0060.0036.4600.026*0.0030.0012.7000.135**
X 1 2 10.0040.0049.1300.019*0.0010.0011.3300.287**
X 2 2 10.0020.0024.6100.069**0.0020.0024.3700.075**
Two-way interaction10.0100.01022.9200.002*0.0020.0023.1600.118**
X 1 X 2 10.0100.01022.9200.002*0.0020.0023.1600.118**
Error70.0030.000 0.0040.001
Lack-of-fit30.0000.0000.2400.865**0.0020.0011.1600.427**
Pure error40.0030.001 0.0020.000
Total120.034 0.016
R 2 0.911 0.765

CCD on activation of RHC using KOH and NaOH_

RunFactor
Concentration (% w/v)Activation time (h)
110.008.00
210.0012.00
315.007.17
415.0010.00
515.0010.00
615.0010.00
715.0010.00
815.0010.00
915.0012.83
1020.008.00
1120.0012.00
127.938.00
1322.0710.00
Factor and experimental range
Variableα −10+1+α
Concentration (% w/v)7.9310.0015.0020.0022.07
Activation time (hour)7.178.0010.0012.0012.83

Surface area, pore radius, and pore volume of samples_

SampleSurface area (m2/g)Average pore radius (nm)Pore volume (cm3/g)
RHC25.883.140.04
ACK138.862.930.20
ACNa45.803.200.07
DOI: https://doi.org/10.2478/msp-2025-0044 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 198 - 220
Submitted on: Mar 10, 2025
|
Accepted on: Dec 21, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Dewi Qurrota A’yuni, Moh Djaeni, Nandang Mufti, Agus Subagio, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.