Have a personal or library account? Click to login
Physical modelling and analytical evaluation of deformation zones in the extrusion of non-axisymmetric profiles Cover

Physical modelling and analytical evaluation of deformation zones in the extrusion of non-axisymmetric profiles

Open Access
|Dec 2025

References

  1. Liu, Z., Li, L., Fu, C., He, H., Li, B., Defects formation mechanism and precision control of exit flow, velocity in porthole die extrusion of hollow thin-walled aluminum profile, Chin. J. Nonferrous Met., 2021, 31(4): 917–930
  2. Ma, Z., Shu, X., Xu, H., Wang, G., Tong, F., Li, Z., et al., Optimization of porthole extrusion die for 6063 aluminum alloy profile with thin-walled multicavity complex section and analysis of profile performance, Arch. Civ. Mech. Eng., 2024, 24(2): 85. 10.1007/s43452-024-00912-x
  3. Nguyen, T.C., Truong, T.T., Wang, J.W.,·Sheu, J.J., Hsu, C.L., Hsu, Q.C., Analyzing and enhancing the porthole die design for extruding a complicated AA7005 profile, Int. J. Adv. Manuf. Technol., 2024, 134: 4803–4820. 10.1007/s00170-024-14439-1
  4. Qian, D., Li, G., Deng, J., Wang, F., Effect of die structure on extrusion forming of thin-walled component with I-type longitudinal ribs, Int. J. Adv. Manuf. Technol., 2020, 108: 1959–1971. 10.1007/s00170-020-05490-9
  5. Zhang, C., Zhao, G., Guan, Y., Gao, A., Wang, L., Li, P., Virtual tryout and optimization of the extrusion die for an aluminum profile with complex cross-sections, Int. J. Adv. Manuf. Technol., 2014, 78(5–8): 927–937. 10.1007/s00170-014-6691-9
  6. Chen, H., Numerical simulation of extrusion process and die structure optimization for a hollow aluminum profile with thin wall, J. Mech. Eng., 2010, 46: 34
  7. Liu, H., Liu, T., Chen, Z., Wang, H., Gao, K., Zhou, Z., et al., Optimization on extrusion process for large reinforced thin-walled aluminum profile based on experimental design and response surface method, Forg. Stamp. Technol., 2022, 47: 144–152
  8. Kathirgamanathan, P., Neitzert, T., Optimization of pocket design to produce a thin shape complex profile, Prod. Eng., 2009, 3: 231–241. 10.1007/s11740-009-0161-5
  9. Ji, H., Nie, H., Chen, W., Ruan, X., Pan, P., Zhang, J., Optimization of the extrusion die and microstructure analysis for a hollow aluminum alloy profile, Int. J. Adv. Manuf. Technol., 2017, 93: 3461–3471. 10.1007/s00170-017-0720-4
  10. Jo, H.H., Lee, S.K., Jung, C.S., Kim, B.M., A non-steady state FE analysis of Al tubes hot extrusion by a porthole die, J. Mater. Process. Technol., 2006, 173: 223–231. 10.1016/j.jmatprotec.2005.03.039
  11. Zhang, C., Zhao, G., Chen, Z., Chen, H., Kou, F., Effect of extrusion stem speed on extrusion process for a hollow aluminum profile, Mater. Sci. Eng., 2012, 177: 1691–1697. 10.1016/j.mseb.2011.09.041
  12. Chen, L., Zhao, G., Yu, J., Effects of ram velocity on pyramid die extrusion of hollow aluminum profile, Int. J. Adv. Manuf. Technol., 2015, 79: 2117–2125. 10.1007/s00170-015-7059-5
  13. Gordon, W.A., Van Tyne, C.J., Moon, Y.H., Axisymmetric extrusion through adaptable dies – Part 1: flexible velocity fields and power terms, Int. J. Mech. Sci., 2007, 49: 104–115. 10.1016/j.ijmecsci.2006.07.011
  14. Kar, P.K., Sahoo, S.K., Das, N.S., Upper bound analysis for extrusion of t-section bar from square billet through square dies, Meccanica, 2000, 35: 399–410. 10.1023/A:1010361711579
  15. Mohammed, R.J., Effect of die angle on stress distribution in extrusion process of aluminum rod, Basrah J. Eng. Sci., 2014, 14(2): 43–50. http://un.uobasrah.edu.iq/papers/4080.pdf.
  16. Yang, D.Y., Park, K., Kang, Y.S., Integrated finite element simulation for the hot extrusion of complicated Al alloy profiles, J. Mater. Process. Technol., 2001, 111: 25–30. 10.1016/S0924-0136(01)00513-1
  17. Qamar, S.Z., Arif, A.F.M., Sheikh, A.K., A new definition of shape complexity for metal extrusion, J. Mater. Process. Technol., 2004, 155–156: 1734–1739. 10.1016/j.jmatprotec.2004.04.163
  18. Xu, X., Jiang, F., Li, J., Huang, H., Jiang, C., Multi-objective optimization of a multi-cavity, significant wall thickness difference extrusion profile mold design for new energy vehicles, Materials, 2024, 17: 2126. 10.3390/ma17092126
  19. Zhang, C., Wen, M., Zhao, G., Chen, L., Sun, W., Bai, K., One-time determination of 20 material parameters in a strain-compensated constitutive model and its application in extrusion for an Al-Zn-Mg thin-walled profile, Thin-Walled Struct., 2019, 135: 65–77. 10.1016/j.tws.2018.10.034
  20. Zhao, H., Wang, H.N., Wang, M.J., Li, G.Y., Simulation of extrusion process of complicated aluminium profile and die trial, Trans. Nonferrous Met. Soc. China, 2012, 22(7): 1732–1737. 10.1016/S1003-6326(11)61380
  21. Zhang, C., Zhao, G., Chen, H., Guan, Y., Cai, H., Gao, B., Investigation on effects of die orifice layout on three-hole porthole extrusion of aluminum alloy 6063 tubes, J. Mater. Eng. Perform., 2012, 22: 1223–1232. 10.1007/s11665-012-0405-y
  22. Selvaggio, A., Donati, L., Reggiani, B., Haase, M., Dahnke, C., Schwane, M., et al., Scientific Benchmark 2015: Effect of choking and bearing length on metal flow balancing in extrusion dies, Mater. Today: Proc., 2015, 2: 4704–4713. 10.1016/j.matpr.2015.10.003
  23. Karami, P., Abrinia, K., Saghafi, B., A new analytical definition of the dead material zone for forward extrusion of shaped sections, Meccanica, 2014, 49: 295–304. 10.1007/s11012-013-9794-8
  24. Eivani, A.R., Karimi Taheri, A., The effect of dead metal zone formation on strain and extrusion force during equal channel angular extrusion, Compos. Mater. Sci., 2008, 42: 14–20. 10.1016/j.commatsci.2007.06.001
  25. Qamar, S.Z. FEM study of extrusion complexity and dead metal zone, Arch. Mater. Sci. Eng., 2009, 36(2): 110–117
  26. Li, S., Bourke, M.A.M., Beyerlein, I.J., Alexander, D.J., Clausen, B., Finite element analysis of the plastic deformation zone and working load in equal channel angular extrusion, Mater. Sci. Eng. A, 2004, 382: 217–236. 10.1016/j.msea.2004.04.067
  27. Zhang, D., Xu, H., Xu, S., Tong, F., Chen, K., Li, Z., et al., Metal flow behavior and energy consumption model during the extrusion process of a 6063 aluminum alloy profile with complex cross-section, J. Mater. Res. Technol., 2024, 33: 9911–9925. 10.1016/j.jmrt.2024.12.029
  28. Qamar, S.Z., Pervez, T., Effect of process parameters on metal flow and dead metal zone in extrusion, Arch. Mater. Sci., 2007, 28(1–4): 118–123
  29. Qamar, S.Z., Chekotu, J.C.H., Qamar, S.B., Effect of shape complexity on ram pressure and metal flow in aluminum extrusion the minerals, Met. & Mater. Soc., 2019, 71: 12. 10.1007/s11837-019-03748-6
  30. Lof, J., Blokhuis, Y., FEM simulations of the extrusion of complex thin-walled aluminum sections, J. Mater. Process. Technol., 2002, 122: 344–354. 10.1016/S0924-0136(01)01266-3
  31. Abrinia, K., Ghorbani, M., Theoretical and experimental analyses for the forward extrusion of nonsymmetric sections, Mater. Manuf. Process., 2012, 27: 420–429. 10.1080/10426914.2011.577869
  32. Qamar, S.Z., Shape complexity, metal flow, and dead metal zone in cold extrusion, Mater. Manuf. Process., 2010, 25: 1454–1461. 10.1080/10426914.2010.512650
  33. Liu, Y., Wang, T., Wang, Z., Huang, Q., Mathematical modeling and analysis of the tailor rolled blank manufacturing process, Int. J. Mech. Sci., 2024, 266: 108991. 10.1016/j.ijmecsci.2024.108991
  34. Wang, Z., Li, J., Liu, X., Zhang, S., Lin, Y., Tan, J., Diameter-adjustable mandrel for thin-wall tube bending and domain knowledge-integrated optimization, Eng. Appl. Artif. Intell., 2025, 139: 109634. 10.1016/j.engappai.2024.109634
  35. Yao, S., Chen, Y., Sun, C., Zhao, N., Wang, Z., Zhang, D., Dynamic response mechanism of thin-walled plate under confined and unconfined blast loads, J. Mar. Sci. Eng., 2024, 12(2): 224. 10.3390/jmse12020224
  36. Zhang, Z., Wan, L., Wen, Q., Shi, Y., Feng, Z., Wire-based friction stir additive manufacturing of TiC reinforced Al-Cu-Mg composite: Particle refinement and dispersion, Compos. Part. A, 2025, 196: 109009. 10.1016/j.compositesa.2025.109009
DOI: https://doi.org/10.2478/msp-2025-0040 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 17 - 37
Submitted on: Jul 17, 2025
Accepted on: Nov 6, 2025
Published on: Dec 2, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Beata Pawłowska, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.