References
- Liu, Z., Li, L., Fu, C., He, H., Li, B., Defects formation mechanism and precision control of exit flow, velocity in porthole die extrusion of hollow thin-walled aluminum profile, Chin. J. Nonferrous Met., 2021, 31(4): 917–930
- Ma, Z., Shu, X., Xu, H., Wang, G., Tong, F., Li, Z., et al., Optimization of porthole extrusion die for 6063 aluminum alloy profile with thin-walled multicavity complex section and analysis of profile performance, Arch. Civ. Mech. Eng., 2024, 24(2): 85. 10.1007/s43452-024-00912-x
- Nguyen, T.C., Truong, T.T., Wang, J.W.,·Sheu, J.J., Hsu, C.L., Hsu, Q.C., Analyzing and enhancing the porthole die design for extruding a complicated AA7005 profile, Int. J. Adv. Manuf. Technol., 2024, 134: 4803–4820. 10.1007/s00170-024-14439-1
- Qian, D., Li, G., Deng, J., Wang, F., Effect of die structure on extrusion forming of thin-walled component with I-type longitudinal ribs, Int. J. Adv. Manuf. Technol., 2020, 108: 1959–1971. 10.1007/s00170-020-05490-9
- Zhang, C., Zhao, G., Guan, Y., Gao, A., Wang, L., Li, P., Virtual tryout and optimization of the extrusion die for an aluminum profile with complex cross-sections, Int. J. Adv. Manuf. Technol., 2014, 78(5–8): 927–937. 10.1007/s00170-014-6691-9
- Chen, H., Numerical simulation of extrusion process and die structure optimization for a hollow aluminum profile with thin wall, J. Mech. Eng., 2010, 46: 34
- Liu, H., Liu, T., Chen, Z., Wang, H., Gao, K., Zhou, Z., et al., Optimization on extrusion process for large reinforced thin-walled aluminum profile based on experimental design and response surface method, Forg. Stamp. Technol., 2022, 47: 144–152
- Kathirgamanathan, P., Neitzert, T., Optimization of pocket design to produce a thin shape complex profile, Prod. Eng., 2009, 3: 231–241. 10.1007/s11740-009-0161-5
- Ji, H., Nie, H., Chen, W., Ruan, X., Pan, P., Zhang, J., Optimization of the extrusion die and microstructure analysis for a hollow aluminum alloy profile, Int. J. Adv. Manuf. Technol., 2017, 93: 3461–3471. 10.1007/s00170-017-0720-4
- Jo, H.H., Lee, S.K., Jung, C.S., Kim, B.M., A non-steady state FE analysis of Al tubes hot extrusion by a porthole die, J. Mater. Process. Technol., 2006, 173: 223–231. 10.1016/j.jmatprotec.2005.03.039
- Zhang, C., Zhao, G., Chen, Z., Chen, H., Kou, F., Effect of extrusion stem speed on extrusion process for a hollow aluminum profile, Mater. Sci. Eng., 2012, 177: 1691–1697. 10.1016/j.mseb.2011.09.041
- Chen, L., Zhao, G., Yu, J., Effects of ram velocity on pyramid die extrusion of hollow aluminum profile, Int. J. Adv. Manuf. Technol., 2015, 79: 2117–2125. 10.1007/s00170-015-7059-5
- Gordon, W.A., Van Tyne, C.J., Moon, Y.H., Axisymmetric extrusion through adaptable dies – Part 1: flexible velocity fields and power terms, Int. J. Mech. Sci., 2007, 49: 104–115. 10.1016/j.ijmecsci.2006.07.011
- Kar, P.K., Sahoo, S.K., Das, N.S., Upper bound analysis for extrusion of t-section bar from square billet through square dies, Meccanica, 2000, 35: 399–410. 10.1023/A:1010361711579
- Mohammed, R.J., Effect of die angle on stress distribution in extrusion process of aluminum rod, Basrah J. Eng. Sci., 2014, 14(2): 43–50. http://un.uobasrah.edu.iq/papers/4080.pdf.
- Yang, D.Y., Park, K., Kang, Y.S., Integrated finite element simulation for the hot extrusion of complicated Al alloy profiles, J. Mater. Process. Technol., 2001, 111: 25–30. 10.1016/S0924-0136(01)00513-1
- Qamar, S.Z., Arif, A.F.M., Sheikh, A.K., A new definition of shape complexity for metal extrusion, J. Mater. Process. Technol., 2004, 155–156: 1734–1739. 10.1016/j.jmatprotec.2004.04.163
- Xu, X., Jiang, F., Li, J., Huang, H., Jiang, C., Multi-objective optimization of a multi-cavity, significant wall thickness difference extrusion profile mold design for new energy vehicles, Materials, 2024, 17: 2126. 10.3390/ma17092126
- Zhang, C., Wen, M., Zhao, G., Chen, L., Sun, W., Bai, K., One-time determination of 20 material parameters in a strain-compensated constitutive model and its application in extrusion for an Al-Zn-Mg thin-walled profile, Thin-Walled Struct., 2019, 135: 65–77. 10.1016/j.tws.2018.10.034
- Zhao, H., Wang, H.N., Wang, M.J., Li, G.Y., Simulation of extrusion process of complicated aluminium profile and die trial, Trans. Nonferrous Met. Soc. China, 2012, 22(7): 1732–1737. 10.1016/S1003-6326(11)61380
- Zhang, C., Zhao, G., Chen, H., Guan, Y., Cai, H., Gao, B., Investigation on effects of die orifice layout on three-hole porthole extrusion of aluminum alloy 6063 tubes, J. Mater. Eng. Perform., 2012, 22: 1223–1232. 10.1007/s11665-012-0405-y
- Selvaggio, A., Donati, L., Reggiani, B., Haase, M., Dahnke, C., Schwane, M., et al., Scientific Benchmark 2015: Effect of choking and bearing length on metal flow balancing in extrusion dies, Mater. Today: Proc., 2015, 2: 4704–4713. 10.1016/j.matpr.2015.10.003
- Karami, P., Abrinia, K., Saghafi, B., A new analytical definition of the dead material zone for forward extrusion of shaped sections, Meccanica, 2014, 49: 295–304. 10.1007/s11012-013-9794-8
- Eivani, A.R., Karimi Taheri, A., The effect of dead metal zone formation on strain and extrusion force during equal channel angular extrusion, Compos. Mater. Sci., 2008, 42: 14–20. 10.1016/j.commatsci.2007.06.001
- Qamar, S.Z. FEM study of extrusion complexity and dead metal zone, Arch. Mater. Sci. Eng., 2009, 36(2): 110–117
- Li, S., Bourke, M.A.M., Beyerlein, I.J., Alexander, D.J., Clausen, B., Finite element analysis of the plastic deformation zone and working load in equal channel angular extrusion, Mater. Sci. Eng. A, 2004, 382: 217–236. 10.1016/j.msea.2004.04.067
- Zhang, D., Xu, H., Xu, S., Tong, F., Chen, K., Li, Z., et al., Metal flow behavior and energy consumption model during the extrusion process of a 6063 aluminum alloy profile with complex cross-section, J. Mater. Res. Technol., 2024, 33: 9911–9925. 10.1016/j.jmrt.2024.12.029
- Qamar, S.Z., Pervez, T., Effect of process parameters on metal flow and dead metal zone in extrusion, Arch. Mater. Sci., 2007, 28(1–4): 118–123
- Qamar, S.Z., Chekotu, J.C.H., Qamar, S.B., Effect of shape complexity on ram pressure and metal flow in aluminum extrusion the minerals, Met. & Mater. Soc., 2019, 71: 12. 10.1007/s11837-019-03748-6
- Lof, J., Blokhuis, Y., FEM simulations of the extrusion of complex thin-walled aluminum sections, J. Mater. Process. Technol., 2002, 122: 344–354. 10.1016/S0924-0136(01)01266-3
- Abrinia, K., Ghorbani, M., Theoretical and experimental analyses for the forward extrusion of nonsymmetric sections, Mater. Manuf. Process., 2012, 27: 420–429. 10.1080/10426914.2011.577869
- Qamar, S.Z., Shape complexity, metal flow, and dead metal zone in cold extrusion, Mater. Manuf. Process., 2010, 25: 1454–1461. 10.1080/10426914.2010.512650
- Liu, Y., Wang, T., Wang, Z., Huang, Q., Mathematical modeling and analysis of the tailor rolled blank manufacturing process, Int. J. Mech. Sci., 2024, 266: 108991. 10.1016/j.ijmecsci.2024.108991
- Wang, Z., Li, J., Liu, X., Zhang, S., Lin, Y., Tan, J., Diameter-adjustable mandrel for thin-wall tube bending and domain knowledge-integrated optimization, Eng. Appl. Artif. Intell., 2025, 139: 109634. 10.1016/j.engappai.2024.109634
- Yao, S., Chen, Y., Sun, C., Zhao, N., Wang, Z., Zhang, D., Dynamic response mechanism of thin-walled plate under confined and unconfined blast loads, J. Mar. Sci. Eng., 2024, 12(2): 224. 10.3390/jmse12020224
- Zhang, Z., Wan, L., Wen, Q., Shi, Y., Feng, Z., Wire-based friction stir additive manufacturing of TiC reinforced Al-Cu-Mg composite: Particle refinement and dispersion, Compos. Part. A, 2025, 196: 109009. 10.1016/j.compositesa.2025.109009