Have a personal or library account? Click to login
Sliding elements made from biodegradable plastic – friction and wear of poly(lactic acid) compared to polyamide 6 Cover

Sliding elements made from biodegradable plastic – friction and wear of poly(lactic acid) compared to polyamide 6

By: Maciej Kujawa  
Open Access
|Nov 2025

References

  1. Madanhire, I., Mbohwa, C., Lubricant additive impacts on human health and the environment, In: Mitigating Environmental Impact of Petroleum Lubricants, Springer International Publishing, Cham, 2016. p. 17–34. 10.1007/978-3-319-31358-0_2
  2. Nayanathara Thathsarani Pilapitiya, P.G.C., Ratnayake, A.S., The world of plastic waste: A review, Clean. Mater., 2024, 11: 100220. 10.1016/j.clema.2024.100220
  3. Winiarska, E., Jutel, M., Zemelka-Wiacek, M., The potential impact of nano- and microplastics on human health: Understanding human health risks, Environ. Res., 2024, 251: 118535. 10.1016/j.envres.2024.118535
  4. Prata, J.C., da Costa, J.P., Lopes, I., Andrady, A.L., Duarte, A.C., Rocha-Santos, T., A One Health perspective of the impacts of microplastics on animal, human and environmental health, Sci. Total. Environ., 2021, 777: 146094. 10.1016/j.scitotenv.2021.146094
  5. Li, N., Yang, H., Dong, Y., Wei, B., Liang, L., Yun, X., et al., Prevalence and implications of microplastic contaminants in general human seminal fluid: A Raman spectroscopic study, Sci. Total. Environ., 2024, 937: 173522. 10.1016/j.scitotenv.2024.173522
  6. Gaspar, L., Bartman, S., Coppotelli, G., Ross, J.M., Acute exposure to microplastics induced changes in behavior and inflammation in young and old mice, Int. J. Mol. Sci., 2023, 24(15): 12308. 10.3390/ijms241512308
  7. Garcia, M.M., Romero, A.S., Merkley, S.D., Meyer-Hagen, J.L., Forbes, C., Hayek, E. E., et al., In vivo tissue distribution of polystyrene or mixed polymer microspheres and metabolomic analysis after oral exposure in mice, Environ. Health Perspect., 2024, 132(4):047005-1–14. 10.1289/EHP13435
  8. RameshKumar, S., Shaiju, P., O’Connor, K.E., Bio-based and biodegradable polymers – State-of-the-art, challenges and emerging trends, Curr. Opin. Green. Sustain. Chem., 2020, 21: 75–81. 10.1016/j.cogsc.2019.12.005
  9. Elvers, D., Song, C.H., Steinbüchel, A., Leker, J., Technology trends in biodegradable polymers: Evidence from patent analysis, Polym. Rev., 2016, 56(4): 584–606. 10.1080/15583724.2015.1125918
  10. Farah, S., Anderson, D.G., Langer, R., Physical and mechanical properties of PLA, and their functions in widespread applications – A comprehensive review, Adv. Drug. Delivery Rev., 2016, 107: 367–392. 10.1016/j.addr.2016.06.012
  11. Madhavan Nampoothiri, K., Nair, N.R., John, R.P., An overview of the recent developments in polylactide (PLA) research, Bioresour. Technol., 2010, 101(22): 8493–8501. 10.1016/j.biortech.2010.05.092
  12. Napper, I.E., Thompson, R.C., Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period, Environ. Sci. Technol., 2019, 53(9): 4775–4783. 10.1021/acs.est.8b06984
  13. binti Jalani, J.C., Arshad, Z.I.M., PLA degradation and PLA-degrading bacteria: A mini-review, Key Eng. Mater., 2022, 932: 103–110. 10.4028/p-4ic76p
  14. Shekhar, N., Mondal, A., Synthesis, properties, environmental degradation, processing, and applications of Polylactic Acid (PLA): an overview, Polym. Bull., 2024, 81: 11421–11457. 10.1007/s00289-024-05252-7
  15. Borelbach, P., Kopitzky, R., Dahringer, J., Gutmann, P., Degradation behavior of biodegradable man-made fibers in natural soil and in compost, Polymers, 2023, 15(13): 2959. 10.3390/polym15132959
  16. Rudnik, E., Briassoulis, D., Comparative biodegradation in soil behaviour of two biodegradable polymers based on renewable resources, J. Polym. Environ., 2011, 19(1): 18–39. 10.1007/s10924-010-0243-7
  17. Tsuji, H., Suzuyoshi, K., Environmental degradation of biodegradable polyesters 1. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in controlled static seawater, Polym. Degrad. Stab., 2002, 75(2): 347–355. 10.1016/S0141-3910(01)00240-3
  18. Tsuji, H., Suzuyoshi, K., Environmental degradation of biodegradable polyesters 2. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in natural dynamic seawater, Polym. Degrad. Stab., 2002, 75(2): 357–365. 10.1016/S0141-3910(01)00239-7
  19. Le Duigou, A., Davies, P., Baley, C., Seawater ageing of flax/poly(lactic acid) biocomposites, Polym. Degrad. Stab., 2009, 94(7): 1151–1162. 10.1016/j.polymdegradstab.2009.03.025
  20. Şirin, Ş., Aslan, E., Akincioğlu, G., Effects of 3D-printed PLA material with different filling densities on coefficient of friction performance, Rapid Prototyp. J., 2023, 29(1): 157–165. 10.1108/RPJ-03-2022-0081
  21. Zhiani Hervan, S., Altınkaynak, A., Parlar, Z., Hardness, friction and wear characteristics of 3D-printed PLA polymer, Proc. Inst. Mech. Eng., Part. J: J. Eng. Tribol., 2021, 235(8): 1590–1598. 10.1177/1350650120966407
  22. Zhang, P., Hu, Z., Xie, H., Lee, G.H., Lee, C.H., Friction and wear characteristics of polylactic acid (PLA) for 3D printing under reciprocating sliding condition, Ind. Lubrication Tribol., 2019, 72(4): 533–539. 10.1108/ILT-11-2016-0280
  23. Frunzaverde, D., Cojocaru, V., Ciubotariu, C.R., Miclosina, C.O., Ardeljan, D.D., Ignat, E.F., et al., The influence of the printing temperature and the filament color on the dimensional accuracy, tensile strength, and friction performance of FFF-printed PLA specimens, Polymers, 2022, 14(10): 1978. 10.3390/polym14101978
  24. Zainal, M.A., Ismail, K.I., Yap, T.C., Tribological properties of PLA 3D printed at different extrusion temperature, J. Phys.: Conf. Ser., 2023, 2542(1): 012001. 10.1088/1742-6596/2542/1/012001
  25. Ramadan, M.A, Sabour, H.A., Eman, E.S., Tribological properties of 3D printed polymers: PCL, ABS, PLA and Co polyester. Tribol. Ind., 2023;45(1): 161–167. 10.24874/ti.1410.11.22.02
  26. Chisiu, G., Stoica, N.A., Stoica, A.M., Friction behavior of 3D-printed polymeric materials used in sliding systems, Materiale Plastice, 2021, 58(1): 176–185. 10.37358/MP.21.1.5457
  27. Mathurosemontri, S., Thumsorn, S., Nagai, S., Hamada, H., Investigation of friction and wear behavior of polyoxymethylene/poly(lactic acid) blends, Key Eng. Mater., 2017, 728: 229–234. 10.4028/www.scientific.net/KEM.728.229
  28. Fekete, G., Numerical wear analysis of a PLA-made spur gear pair as a function of friction coefficient and temperature, Coatings, 2021, 11(4): 409. 10.3390/coatings11040409
  29. Technical Data Sheet Plexiwire PLA. https://www.plexiwire.com/wp-content/uploads/2023/08/TDS-Plexiwire-filament-PLA.pdf.
  30. Technical Data Sheet Plexiwire Nylon PA6. https://www.plexiwire.com/wp-content/uploads/2023/08/TDS-Plexiwire-filament-Nylon-PA6.pdf.
  31. Jian-di, J., Kun, Z., Chong-yang, L., Guo-zhang, W., Thermal expansion behavior of aliphatic polyamides, Acta Polymerica Sin., 2013, (2): 255–262. 10.3724/SP.J.1105.2013.12241
  32. Rădulescu, B., Mihalache, A.M., Hrițuc, A., Rădulescu, M., Slătineanu, L., Munteanu, A., et al., Thermal expansion of plastics used for 3D printing, Polymers, 2022, 14(15): 3061. 10.3390/polym14153061
  33. Wieleba, W., Przegląd polimerów termoplastycznych stosowanych na ślizgowe elementy maszyn, In: Bezobsługowe łożyska ślizgowe z polimerów termoplastycznych, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2013. p. 11–47
  34. Rajesh, J.J., Bijwe, J., Tewari, U., Abrasive wear performance of various polyamides, Wear, 2002, 252(9–10): 769–776. 10.1016/S0043-1648(02)00039-X
  35. Hosseini, M., Mashtizadeh, A.R., Taghizadeh Tabrizi, A., Hossein, A., Effect of lead and molybdenum disulfide additives on wear resistance and physical properties of copper–graphite composite, Mater. Sci.-Poland, 2024, 42(4): 148–161. 10.2478/msp-2024-0046
  36. Kannan, P.R., Thanigaivelan, R., Thiraviam, R., Pradeep Kumar, K., Performance studies on hybrid nano-metal matrix composites for wear and surface quality, Mater. Sci.-Poland, 2023, 41(2): 288–300. 10.2478/msp-2023-0020
  37. Xia, R., Zhang, K., Shu, F., Zhang, X., Yan, L., Li, C., Effects of B content on wear and corrosion resistance of laser-cladded Co-based alloy coatings, Mater. Sci.-Poland, 2024, 41(4): 13–23. 10.2478/msp-2023-0040
  38. Przekop, R.E., Kujawa, M., Pawlak, W., Dobrosielska, M., Sztorch, B., Wieleba, W., Graphite modified polylactide (PLA) for 3D printed (FDM/FFF) sliding elements, Polymers, 2020, 12(6): 1250. 10.3390/polym12061250
  39. Kujawa, M., Przekop, R., Pawlak, W., Widuch, A., Hanszke, J., The influence of graphite addition on tribological properties of polylactide (PLA), Tribologia, 2023, 304(2): 45–54. 10.5604/01.3001.0053.6123
  40. Kujawa, M., Głowacka, J., Pawlak, W., Sztorch, B., Pakuła, D., Frydrych, M., et al., Molybdenum disulphide modified polylactide for 3D printed (FDM/FFF) filaments, Polymers, 2023, 15(10): 2236. 10.3390/polym15102236
  41. Santo, J., Pradik, V., Kalakoti, S., Saravanan, P., Penumakala, P.K., Effect of composite processing technique on tribological properties of 3D printed PLA-graphene composites, Tribol. Int., 2024, 198: 109895. 10.1016/j.triboint.2024.109895
  42. Li, X., Lin, Y., Liu, M., Meng, L., Li, C., A review of research and application of polylactic acid composites, J. Appl. Polym. Sci., 2023, 140(7): e53477-1–22. 10.1002/app.53477
  43. Przekop, R.E., Gabriel, E., Dobrosielska, M., Martyła, A., Jakubowska, P., Głowacka, J., et al., The 3D-printed (FDM/FFF) biocomposites based on polylactide and carbonate lake sediments – towards a circular economy, Polymers, 2023, 15(13): 2817. 10.3390/polym15132817
  44. Suder, J., Bobovsky, Z., Mlotek, J., Vocetka, M., Zeman, Z., Safar, M., Experimental analysis of temperature resistance of 3D printed PLA components, MM Sci. J., 2021, 2021(1): 4322–4327. 10.17973/MMSJ.2021_03_2021004
  45. Sun, S., Meng, X., Xie, Y., Wang, J., Ma, X., Wang, N., et al., Wire-based friction stir additive manufacturing enables enhanced interlayer bonding in aluminum-matrix composites, J. Manuf. Process., 2025, 153: 1–15. 10.1016/j.jmapro.2025.08.078
  46. Zhang, Z., Wan, L., Meng, X., Xie, Y., Tian, H., Mao, D., et al., Robotic wire-based friction stir additive manufacturing, Addit. Manuf., 2024, 88: 104261. 10.1016/j.addma.2024.104261
  47. Hassan, A., Pedapati, S.R., Awang, M., Soomro, I.A., A comprehensive review of friction stir additive manufacturing (FSAM) of non-ferrous alloys, Materials, 2023, 16(7): 2723. 10.3390/ma16072723
  48. Derazkola, H.A., Khodabakhshi, F., Simchi, A., Evaluation of a polymer-steel laminated sheet composite structure produced by friction stir additive manufacturing (FSAM) technology, Polym. Test., 2020, 90: 106690. 10.1016/j.polymertesting.2020.106690
  49. Tagimalek, H., Mahmoodi, M., Evaluation of wear test on functionally graded metal-polymer tri-laminate composite interfaces of cooling-assisted friction stir additive manufacturing, J. Adv. Join. Process., 2023, 8: 100166. 10.1016/j.jajp.2023.100166
DOI: https://doi.org/10.2478/msp-2025-0039 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 1 - 16
Submitted on: Sep 2, 2025
Accepted on: Nov 19, 2025
Published on: Nov 28, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Maciej Kujawa, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.