References
- Madanhire, I., Mbohwa, C., Lubricant additive impacts on human health and the environment, In: Mitigating Environmental Impact of Petroleum Lubricants, Springer International Publishing, Cham, 2016. p. 17–34. 10.1007/978-3-319-31358-0_2
- Nayanathara Thathsarani Pilapitiya, P.G.C., Ratnayake, A.S., The world of plastic waste: A review, Clean. Mater., 2024, 11: 100220. 10.1016/j.clema.2024.100220
- Winiarska, E., Jutel, M., Zemelka-Wiacek, M., The potential impact of nano- and microplastics on human health: Understanding human health risks, Environ. Res., 2024, 251: 118535. 10.1016/j.envres.2024.118535
- Prata, J.C., da Costa, J.P., Lopes, I., Andrady, A.L., Duarte, A.C., Rocha-Santos, T., A One Health perspective of the impacts of microplastics on animal, human and environmental health, Sci. Total. Environ., 2021, 777: 146094. 10.1016/j.scitotenv.2021.146094
- Li, N., Yang, H., Dong, Y., Wei, B., Liang, L., Yun, X., et al., Prevalence and implications of microplastic contaminants in general human seminal fluid: A Raman spectroscopic study, Sci. Total. Environ., 2024, 937: 173522. 10.1016/j.scitotenv.2024.173522
- Gaspar, L., Bartman, S., Coppotelli, G., Ross, J.M., Acute exposure to microplastics induced changes in behavior and inflammation in young and old mice, Int. J. Mol. Sci., 2023, 24(15): 12308. 10.3390/ijms241512308
- Garcia, M.M., Romero, A.S., Merkley, S.D., Meyer-Hagen, J.L., Forbes, C., Hayek, E. E., et al., In vivo tissue distribution of polystyrene or mixed polymer microspheres and metabolomic analysis after oral exposure in mice, Environ. Health Perspect., 2024, 132(4):047005-1–14. 10.1289/EHP13435
- RameshKumar, S., Shaiju, P., O’Connor, K.E., Bio-based and biodegradable polymers – State-of-the-art, challenges and emerging trends, Curr. Opin. Green. Sustain. Chem., 2020, 21: 75–81. 10.1016/j.cogsc.2019.12.005
- Elvers, D., Song, C.H., Steinbüchel, A., Leker, J., Technology trends in biodegradable polymers: Evidence from patent analysis, Polym. Rev., 2016, 56(4): 584–606. 10.1080/15583724.2015.1125918
- Farah, S., Anderson, D.G., Langer, R., Physical and mechanical properties of PLA, and their functions in widespread applications – A comprehensive review, Adv. Drug. Delivery Rev., 2016, 107: 367–392. 10.1016/j.addr.2016.06.012
- Madhavan Nampoothiri, K., Nair, N.R., John, R.P., An overview of the recent developments in polylactide (PLA) research, Bioresour. Technol., 2010, 101(22): 8493–8501. 10.1016/j.biortech.2010.05.092
- Napper, I.E., Thompson, R.C., Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period, Environ. Sci. Technol., 2019, 53(9): 4775–4783. 10.1021/acs.est.8b06984
- binti Jalani, J.C., Arshad, Z.I.M., PLA degradation and PLA-degrading bacteria: A mini-review, Key Eng. Mater., 2022, 932: 103–110. 10.4028/p-4ic76p
- Shekhar, N., Mondal, A., Synthesis, properties, environmental degradation, processing, and applications of Polylactic Acid (PLA): an overview, Polym. Bull., 2024, 81: 11421–11457. 10.1007/s00289-024-05252-7
- Borelbach, P., Kopitzky, R., Dahringer, J., Gutmann, P., Degradation behavior of biodegradable man-made fibers in natural soil and in compost, Polymers, 2023, 15(13): 2959. 10.3390/polym15132959
- Rudnik, E., Briassoulis, D., Comparative biodegradation in soil behaviour of two biodegradable polymers based on renewable resources, J. Polym. Environ., 2011, 19(1): 18–39. 10.1007/s10924-010-0243-7
- Tsuji, H., Suzuyoshi, K., Environmental degradation of biodegradable polyesters 1. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in controlled static seawater, Polym. Degrad. Stab., 2002, 75(2): 347–355. 10.1016/S0141-3910(01)00240-3
- Tsuji, H., Suzuyoshi, K., Environmental degradation of biodegradable polyesters 2. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in natural dynamic seawater, Polym. Degrad. Stab., 2002, 75(2): 357–365. 10.1016/S0141-3910(01)00239-7
- Le Duigou, A., Davies, P., Baley, C., Seawater ageing of flax/poly(lactic acid) biocomposites, Polym. Degrad. Stab., 2009, 94(7): 1151–1162. 10.1016/j.polymdegradstab.2009.03.025
- Şirin, Ş., Aslan, E., Akincioğlu, G., Effects of 3D-printed PLA material with different filling densities on coefficient of friction performance, Rapid Prototyp. J., 2023, 29(1): 157–165. 10.1108/RPJ-03-2022-0081
- Zhiani Hervan, S., Altınkaynak, A., Parlar, Z., Hardness, friction and wear characteristics of 3D-printed PLA polymer, Proc. Inst. Mech. Eng., Part. J: J. Eng. Tribol., 2021, 235(8): 1590–1598. 10.1177/1350650120966407
- Zhang, P., Hu, Z., Xie, H., Lee, G.H., Lee, C.H., Friction and wear characteristics of polylactic acid (PLA) for 3D printing under reciprocating sliding condition, Ind. Lubrication Tribol., 2019, 72(4): 533–539. 10.1108/ILT-11-2016-0280
- Frunzaverde, D., Cojocaru, V., Ciubotariu, C.R., Miclosina, C.O., Ardeljan, D.D., Ignat, E.F., et al., The influence of the printing temperature and the filament color on the dimensional accuracy, tensile strength, and friction performance of FFF-printed PLA specimens, Polymers, 2022, 14(10): 1978. 10.3390/polym14101978
- Zainal, M.A., Ismail, K.I., Yap, T.C., Tribological properties of PLA 3D printed at different extrusion temperature, J. Phys.: Conf. Ser., 2023, 2542(1): 012001. 10.1088/1742-6596/2542/1/012001
- Ramadan, M.A, Sabour, H.A., Eman, E.S., Tribological properties of 3D printed polymers: PCL, ABS, PLA and Co polyester. Tribol. Ind., 2023;45(1): 161–167. 10.24874/ti.1410.11.22.02
- Chisiu, G., Stoica, N.A., Stoica, A.M., Friction behavior of 3D-printed polymeric materials used in sliding systems, Materiale Plastice, 2021, 58(1): 176–185. 10.37358/MP.21.1.5457
- Mathurosemontri, S., Thumsorn, S., Nagai, S., Hamada, H., Investigation of friction and wear behavior of polyoxymethylene/poly(lactic acid) blends, Key Eng. Mater., 2017, 728: 229–234. 10.4028/www.scientific.net/KEM.728.229
- Fekete, G., Numerical wear analysis of a PLA-made spur gear pair as a function of friction coefficient and temperature, Coatings, 2021, 11(4): 409. 10.3390/coatings11040409
- Technical Data Sheet Plexiwire PLA. https://www.plexiwire.com/wp-content/uploads/2023/08/TDS-Plexiwire-filament-PLA.pdf.
- Technical Data Sheet Plexiwire Nylon PA6. https://www.plexiwire.com/wp-content/uploads/2023/08/TDS-Plexiwire-filament-Nylon-PA6.pdf.
- Jian-di, J., Kun, Z., Chong-yang, L., Guo-zhang, W., Thermal expansion behavior of aliphatic polyamides, Acta Polymerica Sin., 2013, (2): 255–262. 10.3724/SP.J.1105.2013.12241
- Rădulescu, B., Mihalache, A.M., Hrițuc, A., Rădulescu, M., Slătineanu, L., Munteanu, A., et al., Thermal expansion of plastics used for 3D printing, Polymers, 2022, 14(15): 3061. 10.3390/polym14153061
- Wieleba, W., Przegląd polimerów termoplastycznych stosowanych na ślizgowe elementy maszyn, In: Bezobsługowe łożyska ślizgowe z polimerów termoplastycznych, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2013. p. 11–47
- Rajesh, J.J., Bijwe, J., Tewari, U., Abrasive wear performance of various polyamides, Wear, 2002, 252(9–10): 769–776. 10.1016/S0043-1648(02)00039-X
- Hosseini, M., Mashtizadeh, A.R., Taghizadeh Tabrizi, A., Hossein, A., Effect of lead and molybdenum disulfide additives on wear resistance and physical properties of copper–graphite composite, Mater. Sci.-Poland, 2024, 42(4): 148–161. 10.2478/msp-2024-0046
- Kannan, P.R., Thanigaivelan, R., Thiraviam, R., Pradeep Kumar, K., Performance studies on hybrid nano-metal matrix composites for wear and surface quality, Mater. Sci.-Poland, 2023, 41(2): 288–300. 10.2478/msp-2023-0020
- Xia, R., Zhang, K., Shu, F., Zhang, X., Yan, L., Li, C., Effects of B content on wear and corrosion resistance of laser-cladded Co-based alloy coatings, Mater. Sci.-Poland, 2024, 41(4): 13–23. 10.2478/msp-2023-0040
- Przekop, R.E., Kujawa, M., Pawlak, W., Dobrosielska, M., Sztorch, B., Wieleba, W., Graphite modified polylactide (PLA) for 3D printed (FDM/FFF) sliding elements, Polymers, 2020, 12(6): 1250. 10.3390/polym12061250
- Kujawa, M., Przekop, R., Pawlak, W., Widuch, A., Hanszke, J., The influence of graphite addition on tribological properties of polylactide (PLA), Tribologia, 2023, 304(2): 45–54. 10.5604/01.3001.0053.6123
- Kujawa, M., Głowacka, J., Pawlak, W., Sztorch, B., Pakuła, D., Frydrych, M., et al., Molybdenum disulphide modified polylactide for 3D printed (FDM/FFF) filaments, Polymers, 2023, 15(10): 2236. 10.3390/polym15102236
- Santo, J., Pradik, V., Kalakoti, S., Saravanan, P., Penumakala, P.K., Effect of composite processing technique on tribological properties of 3D printed PLA-graphene composites, Tribol. Int., 2024, 198: 109895. 10.1016/j.triboint.2024.109895
- Li, X., Lin, Y., Liu, M., Meng, L., Li, C., A review of research and application of polylactic acid composites, J. Appl. Polym. Sci., 2023, 140(7): e53477-1–22. 10.1002/app.53477
- Przekop, R.E., Gabriel, E., Dobrosielska, M., Martyła, A., Jakubowska, P., Głowacka, J., et al., The 3D-printed (FDM/FFF) biocomposites based on polylactide and carbonate lake sediments – towards a circular economy, Polymers, 2023, 15(13): 2817. 10.3390/polym15132817
- Suder, J., Bobovsky, Z., Mlotek, J., Vocetka, M., Zeman, Z., Safar, M., Experimental analysis of temperature resistance of 3D printed PLA components, MM Sci. J., 2021, 2021(1): 4322–4327. 10.17973/MMSJ.2021_03_2021004
- Sun, S., Meng, X., Xie, Y., Wang, J., Ma, X., Wang, N., et al., Wire-based friction stir additive manufacturing enables enhanced interlayer bonding in aluminum-matrix composites, J. Manuf. Process., 2025, 153: 1–15. 10.1016/j.jmapro.2025.08.078
- Zhang, Z., Wan, L., Meng, X., Xie, Y., Tian, H., Mao, D., et al., Robotic wire-based friction stir additive manufacturing, Addit. Manuf., 2024, 88: 104261. 10.1016/j.addma.2024.104261
- Hassan, A., Pedapati, S.R., Awang, M., Soomro, I.A., A comprehensive review of friction stir additive manufacturing (FSAM) of non-ferrous alloys, Materials, 2023, 16(7): 2723. 10.3390/ma16072723
- Derazkola, H.A., Khodabakhshi, F., Simchi, A., Evaluation of a polymer-steel laminated sheet composite structure produced by friction stir additive manufacturing (FSAM) technology, Polym. Test., 2020, 90: 106690. 10.1016/j.polymertesting.2020.106690
- Tagimalek, H., Mahmoodi, M., Evaluation of wear test on functionally graded metal-polymer tri-laminate composite interfaces of cooling-assisted friction stir additive manufacturing, J. Adv. Join. Process., 2023, 8: 100166. 10.1016/j.jajp.2023.100166