References
- Chaudhary, P., Fatima, F., Kumar, A., Relevance of nanomaterials in food packaging and its advanced future prospects, J. Inorg. Organomet. Polym. Mater., 2020, 30: 5180–5192
- Aresta, A., Calvano, C.D., Trapani, A., Cellamare, S., Zambonin, C.G., De Giglio, E., Development and analytical characterization of vitamin(s)-loaded chitosan nanoparticles for potential food packaging applications, J. Nanopart. Res., 2013, 15: 1592
- Jafari, M, Mousavi, M., Shirzad, K., Hosseini, M.A., Badiei, A., Pourhakkak, P., et al., A TiO₂ nanotube array decorated by Ag nanoparticles for highly sensitive SERS determination and self-cleaning of vitamin B12, Microchem. J., 2022, 181: 107813
- Schmidt, A., Call, L.M., Macheiner, L., Mayer, H.K., Determination of vitamin B12 in four edible insect species by immunoaffinity and ultra-high performance liquid chromatography, Food Chem., 2019, 281: 124–129
- Layden, A.J., Täse, K., Finkelstein, J.L., Neglected tropical diseases and vitamin B12: a review of the current evidence, Trans. R. Soc. Trop. Med. Hyg., 2018, 112: 423–435
- Duhan, J., Saini, S., Kumar, H., Obrai, S., BPGQD/g-C3N4 nanocomposites as sensitive and selective platform for fluorescence and RGB based detection of vitamin B12, J. Lumin., 2024, 275: 120764
- Zhu, X., Wang, X., Zhang, C., Wang, X., Gu, Q., A riboswitch sensor to determine vitamin B12 in fermented foods, Food Chem., 2015, 175: 523–528
- Antherjanam, S., Saraswathyamma, B., Krishnan, R.G., Gopakumar, G.M., Electrochemical sensors as a versatile tool for the quantitative analysis of vitamin B12, Chem. Pap., 2021, 75: 2981–2995
- Gharibzahedi, S.M.T., Moghadam, M., Amft, J., Tolun, A., Hasabnis, G., Altintas, Z., Recent advances in dietary sources, health benefits, emerging encapsulation methods, food fortification, and new sensor-based monitoring of vitamin B12: a critical review, Molecules, 2023, 28: 7469
- Lu, Q., Feng, Y., Zhou, Q., Yang, T., Kuang, H., Xu, C., et al., A time-resolved fluorescent microsphere immunochromatographic assay for determination of vitamin B12 in infant formula milk powder, Biosensors, 2025, 15: 65
- Jardan, Y.A.B., Mostafa, A.M., Barker, J., Ali, A.B.H., El-Wekil, M.M., A novel route for fabrication of yellow emissive carbon dots for selective and sensitive detection of vitamin B12, Anal. Methods, 2025, 17: 3007–3016
- Gharibzahedi, S.M.T., Hasabnis, G.K., Akin, E., Altintas, Z., Molecularly imprinted polymers-based electrochemical sensors for tracking vitamin B12 released from spray-dried microcapsules during in vitro simulated gastrointestinal digestion, Sens. Bio-Sens. Res., 2025, 47: 100759
- Almutib, E., Alasmari, A., Alhashmialameer, D., Algarni, Z.S., Alrahili, M.R., Alzahrani, A., et al., Characterization of cobalt-substituted cadmium ferrites CoxCd1−xFe2O4: structural, optical, and magnetic insights, Appl. Phys. A, 2025, 131: 77
- Shariq, M., Madkhli, A.Y., Kawtherali, S.F., Alshehri, K., Alasmari, A., Algarni, Z.S., et al., Recent advancement in development of nitrogen-doped CQDs for dye sensitized solar cell and photodetector: a review, Surf. Interfaces, 2025, 59: 10591
- Hussain, M., Hussaini, S.S., Shariq, M., Althikrallah, H.A., Al-Qasmi, N., Seku, K., et al., Efficient removal of rhodamine B dye using myrrh-based magnetized multi-walled carbon nanotubes as adsorbent, Adsorption, 2024, 30: 1925–1936
- Alhashmialameer, D., Shariq, M., Althikrallah, H.A., Al-Amari, M., BaQais, A., Alayyafi, A.A., et al., Hydrothermally synthesized Nb-doped TiO₂ nanosheets for efficient removal of methylene blue dye on photocatalytic performance, Phys. Scr., 2024, 99: 085915
- Qamar, M.A., Al-Gethami, W., Alaghaz, A.N.M.A., Shariq, M., Mohammed, A., Areshi, A.A., et al., Progress in the development of phyto-based materials for adsorption of dyes from wastewater: a review, Mater. Today Commun., 2024, 38: 108385
- Hussain, M, Hussaini, S.S., Shariq, M., Alzahrani, H., Alholaisi, A.A., Alharbi, S.H., et al., Enhancing Cu2⁺ ion removal: an innovative approach utilizing modified frankincense gum combined with multiwalled carbon tubes and iron oxide nanoparticles as adsorbent, Molecules, 2023, 28: 4494
- Magdalane, C.M., Kaviyarasu, K., Vijaya, J.J., Siddhardha, B., Jeyaraj, B., Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: synergistic effect of antimicrobial studies, J. Photochem. Photobiol. B Biol., 2017, 173: 23–34
- El-Shafai, N.M., Ramadan, M.S., El-Mehasseb, I.M., Decoration of modified self-assembly membrane by magnesium oxide and yttrium oxide nanoparticles for biosensors, supercapacitors, and water treatment, Int. J. Energy Res., 2022, 46: 18029–18048
- Rajakumar, G., Mao, L., Bao, T., Wen, W., Wang, S., Gomathi, T., et al., Yttrium oxide nanoparticle synthesis: an overview of methods of preparation and biomedical applications, Appl. Sci., 2021, 11: 2172
- Sun, H., Yao, B., Han, Y., Yang, L., Zhao, Y., Wang, S., et al., Multi-interface engineering of self-supported nickel/yttrium oxide electrode enables kinetically accelerated and ultra-stable alkaline hydrogen evolution at industrial-level current density, Adv. Energy Mater., 2024, 14: 2303563
- Yousaf, F., Irfan, M., Plant-mediated synthesis of yttrium oxide nanoparticles vs. traditional methods: current trends and potential applications, BioNanoScience, 2024, 14: 3889–3905
- Niederberger, M., Pinna, N., Metal oxide nanoparticles in organic solvents: synthesis, formation, assembly and application, Springer Sci. Bus. Media, 2009
- Curtis, C.E., Properties of yttrium oxide ceramics, J. Am. Ceram. Soc., 1957, 40: 274–278
- Sowjanya, M., Shariq, M., Alajlani, Y., Pamu, D., Chowdhruy, R., Jayaganthan, R., et al., Effect of Ar: O2 gas atmosphere on optical properties of Y2O3-doped ZnO thin films by RF sputtering, Europhys. Lett., 2022, 129(3), 34003
- Wang, Y.-Y., Gao, M.-Y., Liu, S., Li, G.-R., Gao, X.-P., Yttrium surface gradient doping for enhancing structure and thermal stability of high-Ni layered oxide as cathode for Li-ion batteries, ACS Appl. Mater. Interfaces, 2021, 13: 7343–7354
- Govindasamy, R., Govindarasu, M., Alharthi, S.S., Mani, P., Bernaurdshaw, N., Gomathi, T., et al., Sustainable green synthesis of yttrium oxide (Y₂O₃) nanoparticles using Lantana camara leaf extracts: physicochemical characterization, photocatalytic degradation, antibacterial, and anticancer potency, Nanomaterials, 2022, 12: 2393
- Jay Chithra, M., Sathya, M., Pushpanathan, K.J.A.M.S., Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method, Acta Metall. Sin. (Eng. Lett.), 2015, 28: 394–404
- Chen, C., He, H., Lu, Y., Wu, K., Ye, Z., Surface passivation effect on the photoluminescence of ZnO nanorods, ACS Appl. Mater. Interfaces, 2013, 5: 6354–6359
- Duhan, J., Obrai, S., Highly sensitive and selective fluorescence and smartphone-based sensor for detection of L-dopa using nitrogen sulphur graphene quantum dots, Microchem. J., 2023, 193: 109262
- Den Engelsen, D., Harris, P.G., Ireland, T.G., Fern, G., Silver, J., Symmetry-related transitions in the spectrum of nanosized cubic Y2O3:Tb3⁺, ECS J. Solid. State Sci. Technol., 2015, 4: R105–R113
- Kohlmann, T., Goez, M., Combined static and dynamic intramicellar fluorescence quenching: effects on stationary and time-resolved Stern–Volmer experiments, Phys. Chem. Chem. Phys., 2019, 21: 10075–10085
- Duhan, J., Obrai, S., Samarium, nitrogen co-doped carbon dots for detection of epinephrine: theoretical and experimental, J. Ind. Eng. Chem., 2025, 142: 582–592
- Chapman, J., Truong, V.K., Elbourne, A., Gangadoo, S., Cheeseman, S., Rajapaksha, P., et al., Combining chemometrics and sensors: toward new applications in monitoring and environmental analysis, Chem. Rev., 2020, 120: 6048–6069
- Kumar, P.S., Sundaramurthy, J., Sundarrajan, S., Babu, V.J., Singh, G., Allakhverdiev, S.I., et al., Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation, Energy Environ. Sci., 2014, 7: 3192–3222
- Gai, S., Li, C., Yang, P., Lin, J., Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications, Chem. Rev., 2014, 114: 2343–2389
- Duhan, J., Obrai, S., Lanthanum nitrogen co-doped carbon quantum dots as optical and smartphone sensors for serotonin detection, Opt. Mater., 2023, 145: 114466
- Srinivasan, R., Yogamalar, R., Bose, A.C., Structural and optical studies of yttrium oxide nanoparticles synthesized by co-precipitation method, Mater. Res. Bull., 2010, 45: 1165–1170
- Viswanath, R., Naik, H.S.B., Somalanaik, Y.K.G., Neelanjeneallu, P.K.P., Harish, K.N., Prabhakara, M.C., Studies on characterization, optical absorption, and photoluminescence of yttrium doped ZnS nanoparticles, J. Nanotechnol., 2014, 2014: 924797–924798
- Parangusan, K., Subramanium, V., Sundarabharathi, L., Kannan, K., Radhika, D., Influence of pH on structural, morphological, optical, photocatalytic, and antibacterial properties of yttrium oxide nanoparticles via co-precipitation method, Mater. Chem. Phys., 2021, 276: 125431
- Hu, J., Sun, Y., Aryee, A.A., Qu, L., Zhang, K., Li, Z., Mechanisms for carbon dots-based chemosensing, biosensing, and bioimaging: a review, Anal. Chim. Acta, 2022, 1209: 338885
- Tanwar, A.S., Hussain, S., Malik, A.H., Afroz, M.A., Iyer, P.K., Inner filter effect based selective detection of nitroexplosive-picric acid in aqueous solution and solid support using conjugated polymer, ACS Sens., 2016, 1: 1070–1077
- Oladipo, A.A., Oskouei, S.D., Gazi, M., Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: a review, Beilstein J. Nanotechnol., 2023, 14: 631–673
- Singh, D.P., Inamdar, S.R., Kumar, S., Fluorescence spectrometry, in Modern Techniques of Spectroscopy: Basics, Instrumentation, and Applications, 2021, pp. 431–468
- Duhan, J., Obrai, S., Sodium vanadates doped boron phosphorus graphene quantum dots: a novel nanosensor for the fluorescence detection of rutin, Food Chem., 2024, 460: 140630
- Kannouma, R.E., Kamal, A.H., Hammad, M.A., Mansour, F.R., Tips and tricks for applying luminescent carbon dots in chemical analysis: recent advancements, obstacles, and future outlook, Microchem. J., 2024, 192: 111667
- Ahmad, M., Bushra, R., Ritzoulis, C., Pectin–mucin interactions: insights from fluorimetry, thermodynamics and dual (static and dynamic) quenching mechanisms, Int. J. Biol. Macromol., 2024, 277: 134564
- Hunt, B., Ruiz, A.J., Pogue, B.W., Smartphone-based imaging systems for medical applications: a critical review, J. Biomed. Opt., 2021, 26: 040902
- Banik, S., Melanthota, S.K., Arbaaz, Vaz, J.M., Kadambalithaya, V.M., Hussain, I., et al., Recent trends in smartphone-based detection for biomedical applications: a review, Anal. Bioanal. Chem., 2021, 413: 2389–2406
- Duhan, J., Kumar, H., Obrai, S., Fabrication and DFT study of IFE based nano-sensor for fluorometric detection of norepinephrine, Opt. Laser Technol., 2024, 174: 110665
- Kumar, H., Duhan, J., Obrai, S., Highly sensitive and selective fluorescence and smartphone-based sensor for detection of rutin using boron nitrogen co-doped graphene quantum dots, J. Fluoresc., 2024, 34: 1–13
- Mohamed, G.G., Fekry, A.M., Abou Attia, F.M., Ibrahim, N.S., Azab, S.M., Simultaneous determination of some antidepressant drugs and vitamin B12 in pharmaceutical products and urine sample using HPLC method, J. Chromatogr. B, 2020, 1150: 122178
- Chalissery, P., Homann, C., Stepp, H., Eisel, M., Aumiller, M., Rühm, A., et al., Influence of vitamins and food on the fluorescence spectrum of human urine, Lasers Surg. Med., 2024, 56: 485–495
- Noreldeen, H.A.A., Huang, K.Y., Wu, G.W., Peng, H.P., Deng, H.H., Chen, W., Deep learning-based sensor array: 3D fluorescence spectra of gold nanoclusters for qualitative and quantitative analysis of vitamin B6 derivatives, Anal. Chem., 2022, 94: 9287–9296