References
-
[1]
Srivastava, M., Rathee, S., Maheshwari, S., A review on recent progress in solid state friction based metal additive manufacturing: friction stir additive techniques, Crit. Rev. Solid. State Mater. Sci., 2019, 44(5): 345–377. 10.1080/10408436.2018.1490250
Srivastava M. Rathee S. Maheshwari S. A review on recent progress in solid state friction based metal additive manufacturing: friction stir additive techniques Crit. Rev. Solid. State Mater. Sci. 2019 44 5 345 377 10.1080/10408436.2018.1490250
-
[2]
Janeczek, A., Tomków, J., Derazkola, H.A., Łyczkowska, K., Fydrych, D., Effect of underwater friction stir welding parameters on AA5754 alloy joints: experimental studies, Int. J. Adv. Manuf. Technol., 2024, 134: 5643–5655. 10.1007/s00170-024-14485-9
Janeczek A. Tomków J. Derazkola H.A. Łyczkowska K. Fydrych D. Effect of underwater friction stir welding parameters on AA5754 alloy joints: experimental studies Int. J. Adv. Manuf. Technol. 2024 134 5643 5655 10.1007/s00170-024-14485-9
-
[3]
Chen, H., Meng, X., Chen, J., Wire-based friction stir additive manufacturing toward field repairing, Weld. J., 2022, 101(9): 249S–252S. 10.29391/2022.101.019
Chen H. Meng, X. Chen J. Wire-based friction stir additive manufacturing toward field repairing Weld. J. 2022 101 9 249S 252S 10.29391/2022.101.019
-
[4]
Fatoba, O.S., The impact of residual stresses and porosity on the performance of laser metal additive manufactured (MAM) components: a review, 2024 15th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), IEEE, 2024, pp. 191–197. 10.1109/ICMIMT61937.2024.10585810
Fatoba O.S. The impact of residual stresses and porosity on the performance of laser metal additive manufactured (MAM) components: a review 2024 15th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT) IEEE 2024 pp. 191 197 10.1109/ICMIMT61937.2024.10585810
-
[5]
Pixner, F., Warchomicka, F., Peter, P., Wire-based additive manufacturing of Ti-6Al-4V using electron beam technique, Materials, 2020, 13(15): 3310. 10.3390/ma13153310
Pixner F. Warchomicka F. Peter P. Wire-based additive manufacturing of Ti-6Al-4V using electron beam technique Materials 2020 13 15 3310 10.3390/ma13153310
-
[6]
Srivastava, M., Rathee, S., Tiwari, A., Wire arc additive manufacturing of metals: A review on processes, materials and their behaviour, Mater. Chem. Phys., 2023, 294: 126988. 10.1016/j.matchemphys.2022.126988
Srivastava M. Rathee S. Tiwari A. Wire arc additive manufacturing of metals: A review on processes, materials and their behaviour Mater. Chem. Phys. 2023 294 126988 10.1016/j.matchemphys.2022.126988
-
[7]
Pattanayak, S., Sahoo, S., Gas metal arc welding based additive manufacturing-a review, CIRP J. Manuf. Sci. Technol., 2021, 33: 398–442. 10.1016/j.cirpj.2021.04.010
Pattanayak S. Sahoo S. Gas metal arc welding based additive manufacturing-a review CIRP J. Manuf. Sci. Technol. 2021 33 398 442 10.1016/j.cirpj.2021.04.010
-
[8]
Zhou, X., Zhang, H., Wang, G., Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing, Int. J. Heat. Mass. Transf., 2016, 103: 521–537. 10.1016/j.ijheatmasstransfer.2016.06.084
Zhou X. Zhang H. Wang G. Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing Int. J. Heat. Mass. Transf. 2016 103 521 537 10.1016/j.ijheatmasstransfer.2016.06.084
- Calvert, J., Microstructure and mechanical properties of WE43 alloy produced via additive friction stir technology, Virginia Tech University, Virginia, 2015.
-
[10]
Dilip, J., Ram, G., Microstructure evolution in aluminum alloy AA 2014 during multi-layer friction deposition, Mater. Charact., 2013, 86: 146–151. 10.1016/j.matchar.2013.10.009
Dilip J. Ram G. Microstructure evolution in aluminum alloy AA 2014 during multi-layer friction deposition Mater. Charact. 2013 86 146 151 10.1016/j.matchar.2013.10.009
-
[11]
Dilip, J., Rafi, H., Ram, G., A new additive manufacturing process based on friction deposition, Trans. Indian. Inst. Met., 2011, 64(1–2): 27–30. 10.1007/s12666-011-0005-9
Dilip J. Rafi H. Ram G. A new additive manufacturing process based on friction deposition Trans. Indian. Inst. Met. 2011 64 1–2 27 30 10.1007/s12666-011-0005-9
-
[12]
Akpınar, D., Dilibal, S., Gürol, U., Experimental investigation on WAAM-based functional hard-facing bimetallic part, J. Min. Metall., Sect. B: Metallurgy, 2024, 60(2): 283–293. 10.2298/JMMB240505020A
Akpınar D. Dilibal S. Gürol U. Experimental investigation on WAAM-based functional hard-facing bimetallic part J. Min. Metall., Sect. B: Metallurgy 2024 60 2 283 293 10.2298/JMMB240505020A
-
[13]
Xinkai, W., Li, X., Weiping, X., Influence of process parameters on formation stir additive manufacturing on aluminum alloy, J. Mater. Eng., 2015, 43(5): 8–12. 0.11868/j.issn.1001-4381.2015.05.002
Xinkai W. Li X. Weiping X. Influence of process parameters on formation stir additive manufacturing on aluminum alloy J. Mater. Eng. 2015 43 5 8 12 0.11868/j.issn.1001-4381.2015.05.002
- Xiao, D., Qing, D., The utility model relates to a semi-solid additive manufacturing device: China, CN208359482U, 2019.
-
[15]
Chaowei, S., Hai, Z., Huaxia, Z., Influence of process parameters on additive manufacturing of aluminum alloys by friction stir side additive manufacturing on the forming of additive zones, J. Plasticity Eng., 2021, 28(4): 122–127. 10.3969/j.issn.1007-2012.2022.02.020
Chaowei S. Hai Z. Huaxia Z. Influence of process parameters on additive manufacturing of aluminum alloys by friction stir side additive manufacturing on the forming of additive zones J. Plasticity Eng. 2021 28 4 122 127 10.3969/j.issn.1007-2012.2022.02.020
-
[16]
Schmidt, H., Hattel, J., Wert, J., An analytical model for the heat generation in friction stir welding. Model. Simul. Mater. Sci. Eng., 2004, 12(1): 143–157. 10.1088/0965-0393/12/1/013
Schmidt H. Hattel J. Wert J. An analytical model for the heat generation in friction stir welding Model. Simul. Mater. Sci. Eng. 2004 12 1 143 157 10.1088/0965-0393/12/1/013
-
[17]
Colligan, K., Mishra, R., A conceptual model for the process variables related to heat generation in friction stir welding of aluminum, Scr. Materialia, 2008, 58(5): 327–331. 10.1016/j.scriptamat.2007.10.015
Colligan K. Mishra R. A conceptual model for the process variables related to heat generation in friction stir welding of aluminum Scr. Materialia 2008 58 5 327 331 10.1016/j.scriptamat.2007.10.015
-
[18]
Bin, H., Chunping, H., Haijun, Z., Influence of amount of overlap in friction stir additive manufacturing of LY12 aluminum alloy, J. Nanchang Hangkong Univ. (Nat. Sci.), 2014, 28(3): 78–82. 10.3969/j.issn.1001-4926.2014.03.013
Bin H. Chunping H. Haijun Z. Influence of amount of overlap in friction stir additive manufacturing of LY12 aluminum alloy J. Nanchang Hangkong Univ. (Nat. Sci.) 2014 28 3 78 82 10.3969/j.issn.1001-4926.2014.03.013
-
[19]
Palanivel, S., Sidhar, H., Mishra, R., Friction stir additive manufacturing: Route to high structural performance, JOM, 2015, 67(3): 616–621. 10.1007/s11837-014-1271-x
Palanivel S. Sidhar H. Mishra R. Friction stir additive manufacturing: Route to high structural performance JOM 2015 67 3 616 621 10.1007/s11837-014-1271-x
-
[20]
Zhu, H., Zeng, T., Li, Y., Dong, Q., Liu, Y., Yan, X., Revealing the microstructural evolution and organizational characteristics of aluminum alloy rolling friction deposition additions, J. Mech. Sci. Technol., 2025, 39: 2615–2626. 10.1007/s12206-025-0421-0
Zhu H. Zeng T. Li Y. Dong Q. Liu Y. Yan X. Revealing the microstructural evolution and organizational characteristics of aluminum alloy rolling friction deposition additions J. Mech. Sci. Technol. 2025 39 2615 2626 10.1007/s12206-025-0421-0
-
[21]
Jamaludeen, U.M., Examination and optimization of friction stir welding process parameters of AA6092 alloys, Soldag. Inspeção, 2024, 29: e2907. 10.1590/0104-9224/SI29.07
Jamaludeen U.M. Examination and optimization of friction stir welding process parameters of AA6092 alloys Soldag. Inspeção 2024 29 e2907 10.1590/0104-9224/SI29.07
-
[22]
Patil, N.A., Pedapati, S.R., Kakkeri, S., Pedapati, S., Characterization of EN-AW-6061-O–graphite nanoflake composites for enhanced mechanical properties using multi-pass friction stir processing, Adv. Mater. Sci., 2025, 25(3): 5–17. 10.2478/adms-2025-0012
Patil N.A. Pedapati S.R. Kakkeri S. Pedapati S. Characterization of EN-AW-6061-O–graphite nanoflake composites for enhanced mechanical properties using multi-pass friction stir processing Adv. Mater. Sci. 2025 25 3 5 17 10.2478/adms-2025-0012
-
[23]
Liu, H., Shang, D.G., Liu, J.Z., Guo, Z.K., Fatigue life prediction of laser welded 6156 Al-alloy joints based on crack closure, Theor. Appl. Fract. Mech., 2014, 74: 181–187. 10.1016/j.tafmec.2014.10.001
Liu H. Shang D.G. Liu J.Z. Guo Z.K. Fatigue life prediction of laser welded 6156 Al-alloy joints based on crack closure Theor. Appl. Fract. Mech. 2014 74 181 187 10.1016/j.tafmec.2014.10.001